Optomechanical magnetometers enable highly sensitive magnetic field sensing. However, all such magnetometers to date have been optically excited and read-out either via free space or a tapered optical fiber. This limits their scalability and integrability, and ultimately their range of applications.
View Article and Find Full Text PDFWe followed up a series of 23 Parkinson's disease (PD) patients who had performed an immersive virtual reality (VR) protocol eight years before. On that occasion, six patients incidentally described visual hallucinations (VH) with occurrences of images not included in the virtual environment. Curiously, in the following years, only these patients reported the appearance of VH later in their clinical history, while the rest of the group did not.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2013
A 10-nm-long DNA molecule can bend through large angles reversibly. Past the linear regime, its equilibrium nonlinear bending elasticity is governed by a critical bending torque τ(c)≈30pN×nm at which the molecule develops a kink. This nonlinearity has long been attributed to the nucleation of a bubble or melted region in the molecule.
View Article and Find Full Text PDFHighly nonlinear planar glass waveguides have been shown to be useful for all optical signal processing. However, the typical SMF-28 fiber to waveguide coupling loss of ~5dB/end remains a barrier to practical implementation. Low loss coupling to a fiber using vertical tapering of the waveguide film is analyzed for rib and nanowire waveguides and experimentally demonstrated for ribs showing polarization and wavelength independence over >300nm bandwidth.
View Article and Find Full Text PDFNanowires have been widely studied and have gained a lot of interest in the past decade. Because of their high refractive index and high nonlinearity, chalcogenide glasses (ChGs) are a good candidate for the fabrication of photonic nanowires as such nanowaveguides provide the maximal confinement of light, enabling large enhancement of nonlinear interactions and group-velocity dispersion engineering. Here we report on the generation of λ/12 (∼68 nm) nanowires based on the theoretical and experimental study of the influence of the laser repetition rate on the direct laser fabrication in ChGs (λ = 800 nm).
View Article and Find Full Text PDFWe demonstrate third-harmonic generation (THG) in a dispersion-engineered slow-light photonic crystal waveguide fabricated in AMTIR-1 chalcogenide glass. Owing to the relatively low loss and low dispersion in the slow-light (c/30) regime, combined with the high nonlinear figure of merit of the material (∼2), we obtain a relatively large conversion efficiency (1.4×10(-8)/W(2)), which is 30× higher than in comparable silicon waveguides, and observe a uniform visible light pattern along the waveguide.
View Article and Find Full Text PDFHere we report on the direct laser writing fabrication of Fabry-Perot-type planar microcavities in a three-dimensional (3D) photonic crystal (PhC) embedded within a high-refractive nonlinear chalcogenide glass (ChG) film. The fabricated planar microcavities in a nonlinear ChG 3D PhC facilitate the observation of resonant modes inside the stop gap. The experimental results show that the length of the planar cavity can be well controlled by the fabrication power and thus be used to tune the defect modes.
View Article and Find Full Text PDFWe demonstrate low loss photonic crystal waveguides in chalcogenide (Ge(33)As(12)Se(55)) glasses. The measured losses are as low as 21 dB/cm. We experimentally determine the refractive index of the thin film chalcogenide glass to be n = 2.
View Article and Find Full Text PDFWe investigate the photosensitive and thermo-optic nonlinear properties of chalcogenide glass photonic crystal (PhC) cavities at telecommunications wavelengths. We observe a photosensitive refractive index change in AMTIR-1 (Ge(33)As(12)Se(55)) material in the near-infrared, which is enhanced by light localization in the PhC cavity and manifests in a permanent blue-shift of the nanocavity resonance. Thermo-optic non-linear properties are thoroughly investigated by i) carrying out thermal bistable switching experiments, from which we determined thermal switching times of 63 μs and 93 μs for switch on and switch off respectively and ii) by studying heating of the cavity with a high peak power pulsed laser input, which shows that two-photon absorption is the dominant heating mechanism.
View Article and Find Full Text PDFWe report the first demonstration of optical phase conjugation (OPC) transmission of phase encoded and wavelength-division multiplexed (WDM) signals by the Kerr effect in a planar structured waveguide. The phase conjugated electric field of the signal is produced by four wave mixing pumped by a CW laser during co-propagating with the signal in a highly nonlinear waveguide fabricated in As(2)S(3) glass. Experiments demonstrate the capability of the device to perform dispersion-free transmission through up to 225 km of standard single mode fiber for a 3 × 40 Gb/s WDM signal, with its channels encoded as return-to-zero differential phase shift keying and spaced either 100 or 200 GHz apart.
View Article and Find Full Text PDFWe review the fabrication processes and properties of waveguides that have been made from chalcogenide glasses including highly nonlinear waveguides developed for all-optical processing.
View Article and Find Full Text PDFWe present automatic dispersion control of 1.28Tb/s optical time domain multiplexed signals. The dispersion is monitored by measuring the power of the 1.
View Article and Find Full Text PDFWe report the fabrication of low loss rib waveguides from chalcogenide glass films by thermal nano-imprint using a soft stamp. Waveguides 2-4 µm wide and 1 µm high were fabricated with extremely smooth sidewalls and optical losses limited by Rayleigh scattering to values of 0.26 dB/cm for the TM and 0.
View Article and Find Full Text PDFWe have fabricated 630 × 500 nm nanowires from Ge(11.5)As(24)Se(64.5) chalcogenide glass by electron beam lithography (EBL) and inductively coupled plasma (ICP) etching.
View Article and Find Full Text PDFWe demonstrate chip-based Tbaud optical signal processing for all-optical performance monitoring, switching and demultiplexing based on the instantaneous Kerr nonlinearity in a dispersion-engineered As(2)S(3) planar waveguide. At the Tbaud transmitter, we use a THz bandwidth radio-frequency spectrum analyzer to perform all-optical performance monitoring and to optimize the optical time division multiplexing stages as well as mitigate impairments, for example, dispersion. At the Tbaud receiver, we demonstrate error-free demultiplexing of a 1.
View Article and Find Full Text PDFWe report the first demonstration of simultaneous multi-impairment monitoring at ultrahigh bitrates using a THz bandwidth photonic-chip-based radio-frequency (RF) spectrum analyzer. Our approach employs a 7 cm long, highly nonlinear (gamma approximately 9900 /W/km), dispersion engineered chalcogenide planar waveguide to capture the RF spectrum of an ultrafast 640 Gb/s signal, based on cross-phase modulation, from which we numerically retrieve the autocorrelation waveform. The relationship between the retrieved autocorrelation trace and signal impairments is exploited to simultaneously monitor dispersion, in-band optical signal to noise ratio (OSNR) and timing jitter from a single measurement.
View Article and Find Full Text PDFWe demonstrate a high-Q(approximately 125,000) photonic crystal (PhC) cavity formed using a postprocessing optical exposure technique where the refractive index of a photosensitive chalcogenide PhC is modified locally. The evolution of the cavity resonances was monitored in situ during writing using a tapered fiber evanescent coupling system, and the Q of 125,000 represents 1 order of magnitude increase over previously reported cavities in two-dimensional chalcogenide glass PhC.
View Article and Find Full Text PDFWe studied 23 Parkinson's disease (PD) non-demented patients and 15 controls in Virtual Reality (VR) environments reproducing usual daily living situations. In VR sessions, PD patients performed their actions worse than controls, in terms of time of execution in exploration and pointing, precision as objects avoiding, and in semantic incidental memory task. We observed clear differences of performances between on and off status medication, with a global worsening during off phase.
View Article and Find Full Text PDFWe report the first demonstration of the use of an RF spectrum analyser with multi-terahertz bandwidth to measure the properties of femtosecond optical pulses. A low distortion and broad measurement bandwidth of 2.78 THz (nearly two orders of magnitude greater than conventional opto-electronic analyzers) was achieved by using a 6 cm long As(2)S(3) chalcogenide waveguide designed for high Kerr nonlinearity and near zero dispersion.
View Article and Find Full Text PDFFor the first time to our knowledge the observation of near-IR multiple higher-order stopgaps in three-dimensional photonic crystals (PhCs) fabricated using the direct-laser-writing method in thick chalcogenide glass films is reported. The fabrication and etching conditions necessary to realize well-defined structures are presented. The fabricated PhCs exhibit higher-order stopgaps, which are only evident in high-quality structures.
View Article and Find Full Text PDFWe demonstrate broadband wavelength conversion of a 40 Gb/s return-to-zero signal by cross-phase modulation in a newly developed chalcogenide glass waveguide based photonic chip. These new serpentine As(2)S(3) waveguides offer a nonlinear coefficient approximately 1700 W(-1)km(-1) with 5x lower propagation loss over a length of 22.5 cm which ensures the full propagation length contributes towards the nonlinear process.
View Article and Find Full Text PDFWe report on the fabrication and optical properties of etched highly nonlinear As(2)S(3) chalcogenide planar rib waveguides with lengths up to 22.5 cm and optical losses as low as 0.05 dB/cm at 1550 nm - the lowest ever reported.
View Article and Find Full Text PDFIn this article, Médicos Sin Fronteras (MSF) Spain faces the challenge of selecting, piecing together, and conveying in the clearest possible way, the main lessons learnt over the course of the last seven years in the world of medical care for Chagas disease. More than two thousand children under the age of 14 have been treated; the majority of whom come from rural Latin American areas with difficult access. It is based on these lessons learnt, through mistakes and successes, that MSF advocates that medical care for patients with Chagas disease be a reality, in a manner which is inclusive (not exclusive), integrated (with medical, psychological, social, and educational components), and in which the patient is actively followed.
View Article and Find Full Text PDFWe demonstrate that a highly bend-resistant fiber can be realized. It is shown theoretically that, by introducing both depressed and elevated rings into the cladding, bending loss can be reduced significantly. A fiber based on this design has been fabricated and characterized as a first step toward achieving this goal.
View Article and Find Full Text PDF