The site-specific signal enhancement provided by parahydrogen induced polarization (PHIP) may be combined with magnetic resonance imaging (MRI) to study chemical and biomolecular processes. However, imaging of hydrogen nuclei (H) is hampered by background signals arising from the presence of thermally polarized nuclei. Additionally, fast imaging sequences are commonly based on multiple radio-frequency pulses, where the signals resulting from PHIP oscillate due to the evolution with a J-coupling Hamiltonian.
View Article and Find Full Text PDFThe antiphase character of the PHIP associated signals after a hydrogenation reaction is particularly sensitive to line broadening introduced by magnetic field inhomogeneities and interferences by the presence of resonance lines steaming from a large amount of thermally polarized spins. These obstacles impose a limitation in the detection of reaction products as well as in the experimental setups. A simple way to overcome these impediments consists of acquiring the signal with a train of refocusing pulses instead of a single r.
View Article and Find Full Text PDFA new pulse sequence aimed to filter out NMR signals coming from thermally polarized protons in PHIP experiments based on the OPSY pulse sequence (Only Parahydrogen SpectroscopY) is presented. In analogy to OPSY, which removes thermal polarization by using a pair of magnetic field gradient pulses with an intensity ratio 1:2 and equal duration, the same effect can be achieved using inhomogeneous radiofrequency fields. The spatial dependence of the radiofrequency field is used to control the Hamiltonian, which results in an effective suppression of thermal contributions in the NMR signal, while PHIP originated signals remain unmodified.
View Article and Find Full Text PDFDOSY is a powerful spectroscopic NMR technique that resolves components in mixtures through the evaluation of different diffusion coefficients. The application of DOSY to dilute mixtures is hampered by the low signal to noise ratios (SNR), leading to long acquisition times. The use of PHIP may resolve this issue as long as reproducible signals are obtained in order to perform 2D experiments.
View Article and Find Full Text PDFWhen a qubit or spin interacts with others under a many-body Hamiltonian, the information it contains progressively scrambles. Here, nuclear spins of an adamantane crystal are used as a quantum simulator to monitor such dynamics through out-of-time-order correlators, while a Loschmidt echo (LE) asses how weak perturbations degrade the information encoded in these increasingly complex states. Both observables involve the implementation of a time-reversal procedure which, in practice, involves inverting the sign of the effective Hamiltonian.
View Article and Find Full Text PDFJ Magn Reson
February 2019
Despite the large degree of polarization in PHIP experiments compared to the Boltzmann factor, the presence of a large amount of non-reacted molecules with thermal polarization is an important obstacle when dealing with very diluted samples. The feasibility of enhancing both sensitivity and resolution in a single experiment by combining two well established pulse sequences, OPSY and PHD-PHIP is presented. OPSY is used as a block for filtering the signals originated from thermally polarized protons.
View Article and Find Full Text PDFWe demonstrate that the relative phases in the refocusing pulses of multipulse sequences can compensate for pulse errors and off-resonant effects, which are commonly encountered in J-spectroscopy when CPMG is used for acquisition. The use of supercycles has been considered many times in the past, but always from the view point of time-domain NMR, that is, in an effort to lengthen the decay of the magnetization. Here we use simple spin-coupled systems, in which the quantum evolution of the system can be simulated and contrasted to experimental results.
View Article and Find Full Text PDFIn this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters.
View Article and Find Full Text PDFIn this work, we overview time-reversal nuclear magnetic resonance (NMR) experiments in many-spin systems evolving under the dipolar Hamiltonian. The Loschmidt echo (LE) in NMR is the signal of excitations which, after evolving with a forward Hamiltonian, is recovered by means of a backward evolution. The presence of non-diagonal terms in the non-equilibrium density matrix of the many-body state is directly monitored experimentally by encoding the multiple quantum coherences.
View Article and Find Full Text PDFWe performed Loschmidt echo nuclear magnetic resonance experiments to study decoherence under a scaled dipolar Hamiltonian by means of a symmetrical time-reversal pulse sequence denominated Proportionally Refocused Loschmidt (PRL) echo. The many-spin system represented by the protons in polycrystalline adamantane evolves through two steps of evolution characterized by the secular part of the dipolar Hamiltonian, scaled down with a factor |k| and opposite signs. The scaling factor can be varied continuously from 0 to 1/2, giving access to a range of complexity in the dynamics.
View Article and Find Full Text PDFParahydrogen induced polarization (PHIP) is a powerful hyperpolarization technique. However, as the signal created has an anti-phase characteristic, it is subject to signal cancellation when the experiment is carried out in inhomogeneous magnetic fields or in low fields that lack the necessary spectral resolution. The use of benchtop spectrometers and time domain (TD) analyzers has continuously grown in the last years and many applications are found in the food industry, for non-invasive compound detection or as a test bench for new contrast agents among others.
View Article and Find Full Text PDFHyperpolarization has found many applications in Nuclear Magnetic Resonance (NMR) and Magnetic Resonance Imaging (MRI). However, its usage is still limited to the observation of relatively fast processes because of its short lifetimes. This issue can be circumvented by storing the hyperpolarization in a slowly relaxing singlet state.
View Article and Find Full Text PDFThe alignment of the nuclear spins in parahydrogen can be transferred to other molecules by a homogeneously catalyzed hydrogenation reaction resulting in dramatically enhanced NMR signals. In this chapter we introduce the involved theoretical concepts by two different approaches: the well known, intuitive population approach and the more complex but more complete density operator formalism. Furthermore, we present two interesting applications of PHIP employing homogeneous catalysis.
View Article and Find Full Text PDFThe application of parahydrogen for the generation of hyperpolarization has increased continuously during the last years. When the chemical reaction is carried out at the same field as the NMR experiment (PASADENA protocol) an antiphase signal is obtained, with a separation of the resonance lines of a few Hz. This imposes a stringent limit to the homogeneity of the magnetic field in order to avoid signal cancellation.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) is a very powerful tool in physics, chemistry, and life sciences, although limited by low sensitivity. This problem can be overcome by hyperpolarization techniques dramatically enhancing the NMR signal. However, this approach is restricted to relatively short time scales depending on the nuclear spin-lattice relaxation time T(1) in the range of seconds.
View Article and Find Full Text PDFHyperpolarization by means of ParaHydrogen Induced Polarization (PHIP) has found increasing applications since its discovery. However, in the last decade only a few experiments have been reported describing the hydrogenation of symmetric molecules. A general AA'BB' system is studied here.
View Article and Find Full Text PDFA major challenge in imaging is the detection of small amounts of molecules of interest. In the case of magnetic resonance imaging (MRI) their signals are typically concealed by the large background signal of e.g.
View Article and Find Full Text PDFAn important aspect in assessing the performance of a catalytically active reactor is the accessibility of the reactive sites inside the individual pellets, and the mass transfer of reactants and products to and from these sites. Optimal design often requires a suitable combination of micro- and macropores in order to facilitate mass transport inside the pellet. In an exothermic reaction, fluid exchange between the pellet and the surrounding medium is enhanced by convection, and often by the occurrence of gas bubbles.
View Article and Find Full Text PDFThe NMR transverse relaxation time T(2), determined by a CPMG multipulse sequence, of aqueous hydrogen peroxide (H(2)O(2)) solutions strongly depends on the rate of exchange of the spin-bearing protons between the H(2)O(2) and H(2)O molecules. For pulse separations exceeding the inverse exchange rate, this value becomes a constant only depending on proton exchange time and magnetic field strength. Since this exchange time depends in a non-analytical way on the concentration of H(2)O(2) and on the pH value, a measurement of T(2) and pH allows the inversion of the data for the non-invasive determination of the H(2)O(2) concentration.
View Article and Find Full Text PDFPrevious work showed that by means of the Jeener-Broekaert (JB) experiment, two quasiequilibrium states can be selectively prepared in the proton spin system of thermotropic nematic liquid crystals (LCs) in a strong magnetic field. The similarity of the experimental results obtained in a variety of LC in a broad Larmor frequency range, with crystal hydrates, supports the assumption that also in LC the two spin reservoirs, into which the Zeeman order is transferred, originate in the dipolar energy and that they are associated with a separation in energy scales: A constant of motion related to the stronger dipolar interactions (S), and a second one (W) corresponding to the secular part of the weaker dipolar interactions with regard to the Zeeman and the strong dipolar part. We study the nature of these quasi-invariants in nematic 5CB (4(')-pentyl-4-biphenyl-carbonitrile) and measure their relaxation times by encoding the multiple-quantum coherences of the states following the JB pulse pair on two orthogonal bases, Z and X.
View Article and Find Full Text PDF