Publications by authors named "Bulik S"

The principle of dynamic liver function breath tests is founded on the administration of a C-labeled drug and subsequent monitoring of CO in the breath, quantified as time series delta over natural baseline CO (DOB) liberated from the drug during hepatic CYP-dependent detoxification. One confounding factor limiting the diagnostic value of such tests is that only a fraction of the liberated CO is immediately exhaled, while another fraction is taken up by body compartments from which it returns with delay to the plasma. The aims of this study were to establish a novel variant of the methacetin-based breath test LiMAx that allows to estimate and to eliminate the confounding effect of systemic CO distribution on the DOB curve and thus enables a more reliable assessment of the hepatic detoxification capacity compared with the conventional LiMAx test.

View Article and Find Full Text PDF

Background: Metabolic alterations can serve as targets for diagnosis and cancer therapy. Due to the highly complex regulation of cellular metabolism, definite identification of metabolic pathway alterations remains challenging and requires sophisticated experimentation.

Methods: We applied a comprehensive kinetic model of the central carbon metabolism (CCM) to characterise metabolic reprogramming in murine liver cancer.

View Article and Find Full Text PDF

Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous, toxic, persistent and bioaccumulative organic pollutant. TCDD can potentially enter the food chain through contaminated food of animal origin as a consequence of feed contamination. Prediction of the TCDD transfer from feed into animal products is thus important for human health risk assessment.

View Article and Find Full Text PDF

The epidemic increase of non-alcoholic fatty liver diseases (NAFLD) requires a deeper understanding of the regulatory circuits controlling the response of liver metabolism to nutritional challenges, medical drugs, and genetic enzyme variants. As in vivo studies of human liver metabolism are encumbered with serious ethical and technical issues, we developed a comprehensive biochemistry-based kinetic model of the central liver metabolism including the regulation of enzyme activities by their reactants, allosteric effectors, and hormone-dependent phosphorylation. The utility of the model for basic research and applications in medicine and pharmacology is illustrated by simulating diurnal variations of the metabolic state of the liver at various perturbations caused by nutritional challenges (alcohol), drugs (valproate), and inherited enzyme disorders (galactosemia).

View Article and Find Full Text PDF

The capacity of the liver to convert the metabolic input received from the incoming portal and arterial blood into the metabolic output of the outgoing venous blood has three major determinants: The intra-hepatic blood flow, the transport of metabolites between blood vessels (sinusoids) and hepatocytes and the metabolic capacity of hepatocytes. These determinants are not constant across the organ: Even in the normal organ, but much more pronounced in the fibrotic and cirrhotic liver, regional variability of the capillary blood pressure, tissue architecture and the expression level of metabolic enzymes (zonation) have been reported. Understanding how this variability may affect the regional metabolic capacity of the liver is important for the interpretation of functional liver tests and planning of pharmacological and surgical interventions.

View Article and Find Full Text PDF

Renal oncocytomas are rare benign tumors of the kidney and characterized by a deficient complex I (CI) enzyme activity of the oxidative phosphorylation (OXPHOS) system caused by mitochondrial DNA (mtDNA) mutations. Yet, little is known about the underlying molecular mechanisms and alterations of metabolic pathways in this tumor. We compared renal oncocytomas with adjacent matched normal kidney tissues on a global scale by multi-omics approaches, including whole exome sequencing (WES), proteomics, metabolomics, and metabolic pathway simulation.

View Article and Find Full Text PDF

Cortical information processing comprises various activity states emerging from timed synaptic excitation and inhibition. However, the underlying energy metabolism is widely unknown. We determined the cerebral metabolic rate of oxygen (CMRO) along a tissue depth of <0.

View Article and Find Full Text PDF

Background: Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis.

View Article and Find Full Text PDF

The liver maintains glucose and lipid homeostasis by adapting its metabolic activity to the energy needs of the organism. Communication between hepatocytes and extracellular environment via endocytosis is key to such homeostasis. Here, we addressed the question of whether endosomes are required for gluconeogenic gene expression.

View Article and Find Full Text PDF

Temporal changes of gene expression are a well-known regulatory feature of all cells, which is commonly perceived as a strategy to adapt the proteome to varying external conditions. However, temporal (rhythmic and non-rhythmic) changes of gene expression are also observed under virtually constant external conditions. Here we hypothesize that such changes are a means to render the synthesis of the metabolic output more efficient than under conditions of constant gene activities.

View Article and Find Full Text PDF

Breath tests based on the administration of a (13)C-labeled drug and subsequent monitoring of (13)CO2 in the breath (quantified as DOB - delta over baseline) liberated from the drug during hepatic CPY-dependent detoxification are important tools in liver function diagnostics. The capability of such breath tests to reliably indicate hepatic CYP performance is limited by the fact that (13)CO2 is not exclusively exhaled but also exchanged with other compartments of the body. In order to assess this bias caused by variations of individual systemic CO2 kinetics we administered intravenously the test drug (13)C-methacetin to 25 clinically liver-healthy individuals and monitored progress curves of DOB and the plasma concentration of (13)C-methacetin.

View Article and Find Full Text PDF

Steadily growing experimental evidence suggests that mitochondrial dysfunction plays a key role in the age-dependent impairment of nerve cells underlying several neurodegenerative diseases. In particular, the citric acid cycle enzyme complex α-ketoglutarate dehydrogenase (KGDHC) and respiratory chain complex I of the respiratory chain often show reduced activities in the dopaminergic neurons involved in Parkinson's disease, both giving rise to an impaired mitochondrial energy metabolism as demonstrated in a number of in vitro studies with cell lines as well as isolated mitochondria. To understand the metabolic regulation underlying these experimental findings we used a detailed kinetic model of mitochondrial energy metabolism.

View Article and Find Full Text PDF

Despite the crucial role of the liver in glucose homeostasis, a detailed mathematical model of human hepatic glucose metabolism is lacking so far. Here we present a detailed kinetic model of glycolysis, gluconeogenesis and glycogen metabolism in human hepatocytes integrated with the hormonal control of these pathways by insulin, glucagon and epinephrine. Model simulations are in good agreement with experimental data on (i) the quantitative contributions of glycolysis, gluconeogenesis, and glycogen metabolism to hepatic glucose production and hepatic glucose utilization under varying physiological states.

View Article and Find Full Text PDF

Reduced activity of brain α-ketoglutarate dehydrogenase complex (KGDHC) occurs in a number of neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. In order to quantify the relation between diminished KGDHC activity and the mitochondrial ATP generation, redox state, transmembrane potential, and generation of reactive oxygen species (ROS) by the respiratory chain (RC), we developed a detailed kinetic model. Model simulations revealed a threshold-like decline of the ATP production rate at about 60% inhibition of KGDHC accompanied by a significant increase of the mitochondrial membrane potential.

View Article and Find Full Text PDF

Many tumor types exhibit an impaired Pasteur effect, i.e. despite the presence of oxygen, glucose is consumed at an extraordinarily high rate compared with the tissue from which they originate - the so-called 'Warburg effect'.

View Article and Find Full Text PDF

We present HepatoNet1, the first reconstruction of a comprehensive metabolic network of the human hepatocyte that is shown to accomplish a large canon of known metabolic liver functions. The network comprises 777 metabolites in six intracellular and two extracellular compartments and 2539 reactions, including 1466 transport reactions. It is based on the manual evaluation of >1500 original scientific research publications to warrant a high-quality evidence-based model.

View Article and Find Full Text PDF

Background: Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed.

View Article and Find Full Text PDF

Mathematical analysis and modeling of biochemical reaction networks requires knowledge of the permitted directionality of reactions and membrane transport processes. This information can be gathered from the standard Gibbs energy changes (DeltaG(0)) of reactions and the concentration ranges of their reactants. Currently, experimental DeltaG(0) values are not available for the vast majority of cellular biochemical processes.

View Article and Find Full Text PDF

Kinetic modelling of complex metabolic networks - a central goal of computational systems biology - is currently hampered by the lack of reliable rate equations for the majority of the underlying biochemical reactions and membrane transporters. On the basis of biochemically substantiated evidence that metabolic control is exerted by a narrow set of key regulatory enzymes, we propose here a hybrid modelling approach in which only the central regulatory enzymes are described by detailed mechanistic rate equations, and the majority of enzymes are approximated by simplified(non mechanistic) rate equations (e.g.

View Article and Find Full Text PDF

Most peptide ligands presented by MHC class I molecules are the product of an intracellular pathway comprising protein breakdown in the cytosol, transport into the endoplasmic reticulum, and successive N-terminal trimming events. The efficiency of each of these processes depends on the amino acid sequence of the presented ligand and its precursors. Thus, relating the amino acid composition N-terminal of presented ligands to the sequence specificity of processes in the pathway gives insight into the usage of ligand precursors in vivo.

View Article and Find Full Text PDF

The dynamic behavior of metabolic networks is governed by numerous regulatory mechanisms, such as reversible phosphorylation, binding of allosteric effectors or temporal gene expression, by which the activity of the participating enzymes can be adjusted to the functional requirements of the cell. For most of the cellular enzymes, such regulatory mechanisms are at best qualitatively known, whereas detailed enzyme-kinetic models are lacking. To explore the possible dynamic behavior of metabolic networks in cases of lacking or incomplete enzyme-kinetic information, we present a computational approach based on structural kinetic modeling.

View Article and Find Full Text PDF

Antigenic peptides (epitopes) presented on the cell surface by MHC class I molecules derive from proteolytic degradation of endogenous proteins. Some recent studies have proposed that the majority of epitopes stem from so-called defective ribosomal products (DRiPs), i.e.

View Article and Find Full Text PDF

Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data.

View Article and Find Full Text PDF

The vertebrate immune system is able to detect abnormal body cells by the specific repertoire of 8 - 12 residues long peptides (= epitopes or peptide antigens) presented at the cell surface by the MHC-1 molecule complex. The generation of an epitope starts with the degradation of endogenous proteins into primary oligomeric fragments by cytosolic proteases, predominantly the proteasome. These primary fragments may be further attacked by various amino peptidases resident in the cytosol or, alternatively, may escape from this attack by entering the endoplasmic reticulum (ER) by the transporter associated with antigen presentation (TAP).

View Article and Find Full Text PDF