Publications by authors named "Bulgakova N"

Traditionally, single-color laser beams are used for material processing and modifications of optical, mechanical, conductive, and thermal properties of different materials. So far, there are a limited number of studies about the dual-wavelength laser irradiation of materials, which, however, indicate a strong enhancement in laser energy coupling to solid targets. Here, a theoretical study is reported that aimed at exploring the volumetric excitation of fused silica with dual-wavelength (800 nm and 400 nm) ultrashort laser pulses focused on the material's bulk.

View Article and Find Full Text PDF

Volumetric modification of dielectrics by ultrashort laser pulses is a complex dynamic phenomenon involving material photoexcitation and associated nonlinear processes. To achieve control over modification, it is necessary to gain a deep insight into the dynamics of laser-excited processes that can be realized using double-laser-pulse experiments with different time separations supported by numerical simulations. In this paper, we apply this approach to investigate fused silica modification with femtosecond laser pulses that provides time-resolved information about the dynamic behavior of the laser-excited bandgap material.

View Article and Find Full Text PDF

Amorphous germanium films on nonrefractory glass substrates were annealed by ultrashort near-infrared (1030 nm, 1.4 ps) and mid-infrared (1500 nm, 70 fs) laser pulses. Crystallization of germanium irradiated at a laser energy density (fluence) range from 25 to 400 mJ/cm under single-shot and multishot conditions was investigated using Raman spectroscopy.

View Article and Find Full Text PDF

The electric field driven acceleration of plasma ions is an intrinsic effect in laser-induced plasma plumes and is responsible for the generation of high-energy ions. At high laser fluences (≥ 2 J/cm), multiply charged ions are formed and affect the plume expansion dynamics. In this paper, we used kinetic energy-resolved mass spectrometry to investigate the relative abundance and kinetic energy distributions of singly- and doubly-charged ions produced by KrF-laser ablation of nine different oxide targets.

View Article and Find Full Text PDF

Background: Being a scavenger of free radicals, C fullerenes can influence on the physiological processes in skeletal muscles, however, the effect of such carbon nanoparticles on muscle contractility under acute muscle inflammation remains unclear. Thus, the aim of the study was to reveal the effect of the C fullerene aqueous solution (CFAS) on the muscle contractile properties under acute inflammatory pain.

Methods: To induce inflammation a 2.

View Article and Find Full Text PDF

Silicon-germanium multilayer structures consisting of alternating Si and Ge amorphous nanolayers were annealed by ultrashort laser pulses at near-infrared (1030 nm) and mid-infrared (1500 nm) wavelengths. In this paper, we investigate the effects of the type of substrate (Si or glass), and the number of laser pulses (single-shot and multi-shot regimes) on the crystallization of the layers. Based on structural Raman spectroscopy analysis, several annealing regimes were revealed depending on laser fluence, including partial or complete crystallization of the components and formation of solid Si-Ge alloys.

View Article and Find Full Text PDF

A systematic experimental study was performed to determine laser irradiation conditions for the large-area fabrication of highly regular laser-induced periodic surface structures (HR-LIPSS) on a 220 nm thick Mo film deposited on fused silica. The LIPSS were fabricated by scanning a linearly polarized, spatially Gaussian laser beam at 1030 nm wavelength and 1.4 ps pulse duration over the sample surface at 1 kHz repetition rate.

View Article and Find Full Text PDF

Plasmonic nanostructures have attracted a broad research interest due to their application perspectives in various fields such as biosensing, catalysis, photovoltaics, and biomedicine. Their synthesis by pulsed laser ablation in pure water enables eliminating various side effects originating from chemical contamination. Another advantage of pulsed laser ablation in liquids (PLAL) is the possibility to controllably produce plasmonic nanoparticles (NPs) in combination with other plasmonic or magnetic materials, thus enhancing their functionality.

View Article and Find Full Text PDF

Pathological processes, such as inflammatory effects, oxidative stress, apoptosis and cytotoxicity of blood after an intracerebral hemorrhage (ICH), generally contribute to a secondary injury. One of the secondary ICH consequences in the nervous system may be delayed neurodegeneration of the peripheral nerves. Therefore, the aim of our study was to investigate possible structural changes in the sciatic nerve and changes in the conduction velocity via this nerve at different terms after experimental ICH in male Wistar rats.

View Article and Find Full Text PDF

In epithelial cells, planar polarization of subapical microtubule networks is thought to be important for both breaking cellular symmetry and maintaining the resulting cellular polarity. Studies in the pupal wing and other tissues have suggested two alternative mechanisms for specifying network polarity. On one hand, mechanical strain and/or cell shape have been implicated as key determinants; on the other hand, the Fat-Dachsous planar polarity pathway has been suggested to be the primary polarizing cue.

View Article and Find Full Text PDF

Intracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds many specific cargoes. We examined roles of the AP-1 complex in epithelial morphogenesis, using the wing as a paradigm.

View Article and Find Full Text PDF

Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours.

View Article and Find Full Text PDF

Epidermal growth factor receptor (EGFR) and adhesion protein E-cadherin are major regulators of proliferation and differentiation in epithelial cells. Consistently, defects in both EGFR and E-cadherin-mediated intercellular adhesion are linked to various malignancies. These defects in either are further exacerbated by the reciprocal interactions between the two transmembrane proteins.

View Article and Find Full Text PDF

Objective: The aim of the present paper was to observe the main features of the autofluorescence emission of the oral epithelial carcinomas.

Material And Methods: The study included four patients aged 38-61 years with the oral epithelial carcinomas located at a cheek, a floor of the mouth, a bottom lip. All the diagnoses were later confirmed histologically.

View Article and Find Full Text PDF

Impaired motor and sensory functions are the main features of Charcot-Marie-Tooth disease. Mesenchymal stem cell (MSCs) therapy is one of the possible treatments for this disease. It was assumed that MSCs therapy can improve the contractile properties of the triceps surae (TS) muscles in mice with hereditary peripheral neuropathy.

View Article and Find Full Text PDF

Epithelial tissues rely on the adhesion between participating cells to retain their integrity. The transmembrane protein E-cadherin is the major protein that mediates homophilic adhesion between neighbouring cells and is, therefore, one of the critical components for epithelial integrity. E-cadherin downregulation has been described extensively as a prerequisite for epithelial-to-mesenchymal transition and is a hallmark in many types of cancer.

View Article and Find Full Text PDF

The base of the cilium comprising the transition zone (TZ) and transition fibers (TF) acts as a selecting gate to regulate the intraflagellar transport (IFT)-dependent trafficking of proteins to and from cilia. Before entering the ciliary compartment, IFT complexes and transported cargoes accumulate at or near the base of the cilium. The spatial organization of IFT proteins at the cilia base is key for understanding cilia formation and function.

View Article and Find Full Text PDF

Robustness of biological systems is crucial for their survival, however, for many systems its origin is an open question. Here, we analyze one subcellular level system, the microtubule cytoskeleton. Microtubules self-organize into a network, along which cellular components are delivered to their biologically relevant locations.

View Article and Find Full Text PDF

The epithelial-to-mesenchymal transition is a highly dynamic cell process and tools such as fluorescence recovery after photobleaching (FRAP), which allow the study of rapid protein dynamics, enable the following of this process in vivo. This technique uses a short intense pulse of photons to disrupt the fluorescence of a tagged protein in a region of a sample. The fluorescent signal intensity after this bleaching is then recorded and the signal recovery used to provide an indicator of the dynamics of the protein of interest.

View Article and Find Full Text PDF

Two different scenarios are usually invoked in the formation of femtosecond Laser-Induced Periodic Surface Structures (LIPSS), either "self-organization" mechanisms or a purely "plasmonic" approach. In this paper, a three-step model of formation of single-laser-shot LIPSS is summarized. It is based on the periodic perturbation of the electronic temperature followed by an amplification, for given spatial periods, of the modulation in the lattice temperature and a final possible relocation by hydrodynamic instabilities.

View Article and Find Full Text PDF

Correct cell shape is indispensable for tissue architecture, with cell shape being determined by cortical actin and surface adhesion. The role of adhesion in remodelling tissue is to counteract the deformation of cells by force, resulting from actomyosin contractility, and to maintain tissue integrity. The dynamics of this adhesion are critical to the processes of cell shape formation and maintenance.

View Article and Find Full Text PDF

Precise regulation of cell shape is vital for building functional tissues. Here, we study the mechanisms that lead to the formation of highly elongated anisotropic epithelial cells in the epidermis. We demonstrate that this cell shape is the result of two counteracting mechanisms at the cell surface that regulate the degree of elongation: actomyosin, which inhibits cell elongation downstream of RhoA (Rho1 in ) and intercellular adhesion, modulated via clathrin-mediated endocytosis of E-cadherin (encoded by in flies), which promotes cell elongation downstream of the GTPase Arf1 (Arf79F in ).

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how C fullerene nanoparticles affect neural activation in the central nervous system during muscle fatigue.
  • By using electrophysiological methods and analyzing c-Fos expression, researchers identified specific lumbar segments and amygdala regions that are affected by muscle fatigue.
  • Pretreatment with C fullerenes significantly reduced c-Fos expression levels in these areas, suggesting their antioxidant properties may alleviate nociceptive signaling during fatigue.
View Article and Find Full Text PDF