Publications by authors named "Bulent Akgun"

Article Synopsis
  • Some synthetic polymers can prevent cell death when applied post-injury by interacting with cell membranes.
  • The study focused on modifying biomimetic phosphorylcholine-based block copolymers to enhance their effectiveness in protecting neurons from death due to oxygen-glucose deprivation.
  • The researchers developed a method to tailor the copolymers for effective and non-disruptive interaction with cell membranes, which may lead to new applications for preventing cell death in biological contexts.
View Article and Find Full Text PDF

The envelope (E) protein of Dengue virus rearranges to a trimeric hairpin to mediate fusion of the viral and target membranes, which is essential for infectivity. Insertion of E into the target membrane serves to anchor E and possibly also to disrupt local order within the membrane. Both aspects are likely to be affected by the depth of insertion, orientation of the trimer with respect to the membrane normal, and the interactions that form between trimer and membrane.

View Article and Find Full Text PDF

If you mix lines and circles, what happens at the edge of the mixture? The problem is simply stated, but the answer is not obvious. Twenty years ago it was proposed that a universal topological driving force would drive cyclic chains to enrich the surface of blends of linear and cyclic chains. Here such behavior is demonstrated experimentally for sufficiently long chains and the limit in molecular weight where packing effects dominate over the topological driving force is identified.

View Article and Find Full Text PDF

We report the effects of compressed CO molecules as a novel plasticization agent for poly(3-hexylthiophene) (P3HT)-conjugated polymer thin films. In situ neutron reflectivity experiments demonstrated the excess sorption of CO molecules in the P3HT thin films (about 40 nm in thickness) at low pressure (P = 8.2 MPa) under the isothermal condition of T = 36 °C, which is far below the polymer bulk melting point.

View Article and Find Full Text PDF

The surface height fluctuations of a layer of low molecular weight (2.2k) untethered perdeuterated polystyrene (dPS) chains adjacent to a densely grafted polystyrene brush are slowed dramatically. Due to the interpenetration of the brush with the layer of "untethered chains" a hydrodynamic continuum theory can only describe the fluctuations when the effective thickness of the film is taken to be that which remains above the swollen brush.

View Article and Find Full Text PDF

The scaling of the thickness, hs, of a densely grafted polymer brush of chain length N and grafting density σ swollen in vapor agrees quantitatively with the scaling reported by Kuhl et al. for densely grafted brushes swollen in liquid. Deep in the brush, next to the substrate, the shape of the segment concentration profile is the same whether the brush is swollen by liquid or by vapor.

View Article and Find Full Text PDF

We found that interactions of dipalmitoylphosphatidylcholine (DPPC) lipid monolayers with sugars are influenced by addition of NaCl. This work is of general importance in understanding how sugar-lipid-salt interactions impact biological systems. Using Langmuir isothermal compressions, fluorescence microscopy, atomic force microscopy, and neutron reflectometry, we examined DPPC monolayers upon addition of sugars/polyols and/or monovalent salts.

View Article and Find Full Text PDF

Moisture attack on adhesive joints is a long-standing scientific and engineering problem. A particularly interesting observation is that when the moisture level in certain systems exceeds a critical concentration, the bonded joint shows a dramatic loss of strength. The joint interface plays a dominant role in this phenomenon; however, why a critical concentration of moisture exists and what role is played by the properties of the bulk adhesive have not been adequately addressed.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how CO2 annealing affects melting and crystallization in ultrathin films of poly(ethylene oxide) (PEO) on silicon substrates.
  • The PEO films melted at a lower pressure and temperature than bulk PEO, and quick depressurization led to a non-equilibrium state before subsequent crystallization.
  • Key findings include a consistent flat-on lamellar orientation of molecular chains across varying film thicknesses and slower dewetting rates for thinner films, attributed to irreversibly adsorbed layers formed during CO2 treatment which influence the crystallization and dewetting processes.
View Article and Find Full Text PDF

Sharp dynamic thermal gradient (∇T ≈ 45 °C mm(-1)) field-driven assembly of cylinder-forming block copolymer (c-BCP) films filled with PS-coated gold nanoparticles (AuNPs; dNP ≈ 3.6 nm, φNP ≈ 0-0.1) is studied.

View Article and Find Full Text PDF

Many proteins are posttranslationally modified by acylation targeting them to lipid membranes. While methods such as X-ray crystallography and nuclear magnetic resonance are available to determine the structure of folded proteins in solution, the precise position of folded domains relative to a membrane remains largely unknown. We used neutron and X-ray reflection methods to measure the displacement of the core domain of HIV Nef from lipid membranes upon insertion of the N-terminal myristate group.

View Article and Find Full Text PDF

The dynamics of thermally stimulated surface fluctuations of 100 nm thick films of long-branched polymers are measured for the first time. In contrast to comparable films of linear or cyclic chains that show no change in viscosity upon confinement, films of 6-pom, 6-star, and 6-end end-branched stars show viscosities, inferred from x-ray photon correlation spectroscopy, as much as 100 times higher than in the bulk. This difference varies in magnitude with chain architecture.

View Article and Find Full Text PDF

We demonstrate, using neutron reflectivity, that the width of a nonequilibrium interface between an organo-soluble aromatic polyimide film and triacetate cellulose (TAC) support film created by spin-coating or solution-casting can be broadened in a controllable way using a "swelling agent" in the deposition process. In a favorable case, the adhesion, as measured by T-peel tests, can be increased by a factor of 7 by adjustment of the solvent composition. The morphologies of the TAC fractured surfaces after peeling tests measured by AFM reveal that broadening of the interfacial width causes an interconnected network in the interface, leading to a sharp increase in the interfacial adhesion.

View Article and Find Full Text PDF

The structure of a hydrated poly(N-isopropylacrylamide) brush loaded with 5 vol % Isoniazid is studied as a function of temperature using neutron reflectometry (NR) and atomic force microscopy (AFM). NR measurements show that Isoniazid increases the thickness of the brush before, during and after the polymer collapse, and it is retained inside the brush at all measured temperatures. The Isoniazid concentration in the expanded brush is ~14% higher than in the bulk solution, and the concentration nearly doubles in the collapsed polymer, suggesting stronger binding between Isoniazid and the polymer compared to water, even at temperatures below the lower critical solution temperature (LCST) where the polymer is hydrophilic.

View Article and Find Full Text PDF

We report the chain conformations of polymer molecules accommodated at the solid-polymer melt interfaces in equilibrium. Polystyrene "Guiselin" brushes (adsorbed layers) with different molecular weights were prepared on Si substrates and characterized by using x-ray and neutron reflectivity. The results are intriguing to show that the adsorbed layers are composed of the two different nanoarchitectures: flattened chains that constitute the inner higher density region of the adsorbed layers and loosely adsorbed polymer chains that form the outer bulklike density region.

View Article and Find Full Text PDF

By use of a combined experimental and theoretical approach, a model poly(ethylene oxide) (PEO) brush system, prepared by spreading a poly(ethylene oxide)-poly(n-butyl acrylate) (PEO-PnBA) amphiphilic diblock copolymer onto an air-water interface, was investigated. The polymer segment density profiles of the PEO brush in the direction normal to the air-water interface under various grafting density conditions were determined by using the neutron reflectivity (NR) measurement technique. To achieve a theoretically sound analysis of the reflectivity data, we used a data analysis method that utilizes the self-consistent field (SCF) theoretical modeling as a tool for predicting expected reflectivity results for comparison with the experimental data.

View Article and Find Full Text PDF

The structure of 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C(4)mpyr][NTf(2)]) room-temperature ionic liquid at an electrified gold interface was studied using neutron reflectometry, cyclic voltammetry, and differential capacitance measurements. Subtle differences were observed between the reflectivity data collected on a gold electrode at three different applied potentials. Detailed analysis of the fitted reflectivity data reveals an excess of [C(4)mpyr](+) at the interface, with the amount decreasing at increasingly positive potentials.

View Article and Find Full Text PDF

In situ neutron reflectivity was used to study thermally induced structural changes of the lamellae-forming polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) block copolymer thin films floating on the surface of an ionic liquid (IL). The IL, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, is a nonsolvent for PS and a temperature-tunable solvent for P2VP, and, as such, micellization can be induced at the air-IL interface by changing the temperature. Transmission electron microscopy and scanning force microscopy were used to investigate the resultant morphologies of the micellar films.

View Article and Find Full Text PDF

Tailoring the structure of films deposited by plasma-enhanced chemical vapor deposition (PECVD) to specific applications requires a depth-resolved understanding of how the interface structures in such films are impacted by variations in deposition parameters such as feed position and plasma power. Analysis of complementary X-ray and neutron reflectivity (XR, NR) data provide a rich picture of changes in structure with feed position and plasma power, with those changes resolved on the nanoscale. For plasma-polymerized octafluorocyclobutane (PP-OFCB) films, a region of distinct chemical composition and lower cross-link density is found at the substrate interface for the range of processing conditions studied and a surface layer of lower cross-link density also appears when plasma power exceeds 40 W.

View Article and Find Full Text PDF

Improving the efficiency of enzymatic hydrolysis of cellulose is one of the key technological hurdles to reduce the cost of producing ethanol and other transportation fuels from lignocellulosic material. A better understanding of how soluble enzymes interact with insoluble cellulose will aid in the design of more efficient enzyme systems. We report a study involving neutron reflectometry (NR) and quartz crystal microbalance with dissipation monitoring (QCM-D) of the interaction of a fungal enzyme extract ( T.

View Article and Find Full Text PDF

When downsizing technology, confinement and interface effects become enormously important. Shear imposes additional anisotropy on a liquid. This may induce inhomogeneities, which may have their origin close to the solid interface.

View Article and Find Full Text PDF

Nef is an HIV-1 accessory protein that directly contributes to AIDS progression. Nef is myristoylated on the N-terminus, associates with membranes, and may undergo a transition from a solution conformation to a membrane-associated conformation. It has been hypothesized that conformational rearrangement enables membrane-associated Nef to interact with cellular proteins.

View Article and Find Full Text PDF

The phase behavior of a molecular brush-C(18) grafted to the surface of both a silicon wafer and SiO(2) nanoparticles was investigated as a function of temperature using neutron reflectometry (NR) and small-angle neutron scattering (SANS), respectively. The experiments demonstrate a phase change in the brush layer characterized by a straightening of the molecular configuration, increase in shell thickness, and increase in solvent concentration with decreasing temperature that corresponds to gelation in the nanoparticle dispersion.

View Article and Find Full Text PDF