Microbiol Resour Announc
December 2024
We report the draft genome sequence of strain YE2023, isolated from a pulp of a laboratory-scale bioleach reactor. The genome is 3,221,954 Mbp long with a guanine-cytosine content of 58.16%.
View Article and Find Full Text PDFDue to the need to achieve the principles of sustainable development and to understand the processes of formation of phytocenoses in areas that were adversely affected by the industrial impact, this study assessed the condition of the Grachevsky uranium mine (Kazakhstan), which underwent conservation procedures about 25 years ago. The purpose is to determine the level of water quality and phytocenosis of the shores of the reservoir accumulating natural effluents from reclaimed dumps and anthropogenic sites of a uranium mine, as well as quality indicators and toxicology. The assessment included a qualitative research method (analysis of documents) to determine agro-climatic conditions and empirical methods of collecting information.
View Article and Find Full Text PDFThe possibility of selective Cu and Zn leaching from the sample of old pyrite tailings, which is one of the most widespread types of solid waste forming during non-ferrous metal production, using sulfuric acid solutions and water was studied. It was shown that water leaching provided selective extraction of Cu and Zn and comparatively low iron ion extraction. At the same time, acid leaching provided the obtainment of pregnant solutions with high ferric ion concentration, which can be used for oxidative leaching of substandard copper concentrates.
View Article and Find Full Text PDFThe purpose of this study was to assess the processes of plant community formation on recultivated dumps of spent uranium-containing industrial waste from uranium deposit mines, as well as to identify the degree of impact of agro-climatic factors, agrochemical indicators of soils of recultivated dumps, and the level of residual ionizing radiation on the productivity of the emerging vegetation cover. Studies of plant colonization of recultivated Grachevsky and Shantobinsky uranium mine dumps located in Northern Kazakhstan were carried out. The mining and technical stage of reclamation consisted of planning a dump with slopes of 15° and covering it with a 1 m layer of chestnut soil.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2024
We report the draft genome sequence of a type strain Strain BH2, isolated from a pregnant leachate solution of industrial-scale chalcocite bioleach heap (Monywa, Myanmar). The genome is 1.7 Mbp long with a GC content of 34.
View Article and Find Full Text PDFIn the present study, the effect of additional carbon sources (carbon dioxide and molasses) on the bio-oxidation of a pyrite-arsenopyrite concentrate at temperatures of 40-50 °C was studied, and novel data regarding the patterns of the bio-oxidation of gold-bearing sulfide concentrates and the composition of the microbial populations performing these processes were obtained. At 40 °C, additional carbon sources did not affect the bio-oxidation efficiency. At the same time, the application of additional carbon dioxide improved the bio-oxidation performance at temperatures of 45 and 50 °C and made it possible to avoid the inhibition of bio-oxidation due to an increase in the temperature.
View Article and Find Full Text PDFThe influence of environmental factors, such as lack of water and uneven rainfall, depletion of nutrients in the soil and reduced soil fertility, planting patterns and plant density, uneven growth stages, are the main limiting factors that hinder the growth of agricultural production in arid regions. The aim of the study was to assess the potential of Sentinel-2 to quantify soil conditions, which can improve the understanding of spatiotemporal dynamics in organic agriculture in the steppe zone of Kazakhstan and improve productivity management of Linum usitatissimum. In the course of the research, the influence of individual factors of the general environmental impact, such as the influence of humidity, meteorological conditions, the content of individual nutrient components of the soil on the yield, was studied.
View Article and Find Full Text PDFThe electrochemical features of the interactions of sulfur- and iron-containing compounds (ferrous sulfate, elemental sulfur, pyrite tailings, cysteine, sodium thiosulfate) with a model acidophilic consortium, including the genera , , , , and , were studied. The method of cyclic voltammetry recorded redox processes at the electrode/solution interface in the presence of the studied sulfur- and iron-containing compounds. In general, the modeling consortium led to the intensification of these processes.
View Article and Find Full Text PDFMicroorganisms
September 2022
Bioleaching may be effectively used to extract nonferrous metals from sulfide ores and concentrates. At the same time, some minerals are refractory and their bioleaching rate is often comparatively low that does not allow the required metal extraction rate to be achieved. In the present work, we studied the two-stage process, which included stages of biological and chemical leaching, to improve copper extraction from low grade Cu-Zn sulfide concentrate containing chalcopyrite, tennantite, pyrite, and sphalerite.
View Article and Find Full Text PDFMicrobiol Resour Announc
February 2022
We report the draft genome sequence of Acidiplasma aeolicum strain V1, isolated from a hydrothermal pool (Vulcano Island, Italy). The genome is 1.8 Mbp long with a GC content of 34%.
View Article and Find Full Text PDFIn the mining-impacted Rio Tinto, Spain, Fe-cycling microorganisms influence the transport of heavy metals (HMs) into the Atlantic Ocean. However, it remains largely unknown how spatial and temporal hydrogeochemical gradients along the Rio Tinto shape the composition of Fe-cycling microbial communities and how this in turn affects HM mobility. Using a combination of DNA- and RNA-based 16S rRNA (gene) amplicon sequencing and hydrogeochemical analyses, we explored the impact of pH, Fe(III), Fe(II), and Cl on Fe-cycling microorganisms.
View Article and Find Full Text PDFTank bio-oxidation is a biohydrometallurgical technology widely used for metal recovery from sulfide concentrates. Since carbon availability is one of the key factors affecting microbial communities, it may also determine the rate of sulfide concentrate bio-oxidation. The goal of the present work was to evaluate the effect of carbon sources on the bio-oxidation of the concentrate containing 56% pyrite and 14% arsenopyrite at different temperatures (40 and 50 °C) in stirred tank reactors.
View Article and Find Full Text PDFLMS is an acidophile isolated from industrial bioreactors during the processing of the gold-bearing pyrite-arsenopyrite concentrate at 38-42 °C. Most strains of this species are obligate organoheterotrophs that do not use ferrous iron or reduced sulfur compounds as energy sources. However, the LMS strain was identified as one of the predominant sulfur oxidizers in acidophilic microbial consortia.
View Article and Find Full Text PDFOxidation of sulfide ores in the Iberian Pyrite Belt region leads to the presence of extremely high concentration of dissolved heavy metals (HMs) in the acidic water of the Rio Tinto. Fe(II) is microbially oxidized resulting in the formation of suspended particulate matter (SPM) consisting of microbial cells and Fe(III) minerals with co-precipitated HMs. Although substantial amount of HM-bearing SPM is likely deposited to river sediment, a portion can still be transported through estuary to the coastal ocean.
View Article and Find Full Text PDFResults of genome analysis of a member of the family Ferroplasmaceae, Acidiplasma sp. strain MBA-1, an extremely acidophilic, moderately thermophilic archaeon oxidizing ferrous iron under oxic conditions and utilizing organic compounds. This strain was previously shown to predominate in the community carrying out biooxidation of pyrite-arsenopyrite gold-bearing concentrate.
View Article and Find Full Text PDFThe percolation biooxidation parameters of ore from the Bakyrchik deposit were studied. An investigation of the technological parameters (such as the concentration of leaching agents, irrigation intensity, and pauses at various stages of the leaching) revealed the optimal mode for precious metal extraction. The stages of the ore processing were biooxidation, gold extraction by cyanidation or thiosulfate leaching, and biological destruction of cyanide.
View Article and Find Full Text PDFThe efficiency of biooxidation for treatment of a double-refractory gold-bearing sulfide ore concentrate from the Bakyrchik deposit (East Kazakhstan) was defined. The experiments were conducted in two different modes, i.e.
View Article and Find Full Text PDFNitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be a two-step process catalysed by chemolithoautotrophic microorganisms oxidizing either ammonia or nitrite. No known nitrifier carries out both steps, although complete nitrification should be energetically advantageous. This functional separation has puzzled microbiologists for a century.
View Article and Find Full Text PDFAcidithiobacillus ferroxidans strains were isolated from acidophilic microbial communities of Kazakhstan sulfide ore deposits. Their biotechnologically important properties (optimal and maximal growth temperatures and resistance to NaCl) were determined. While temperature optima of the strains were the same (30-32 degrees C), temperature ranges were different.
View Article and Find Full Text PDFA method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1.
View Article and Find Full Text PDFThe discovery of ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota and the high abundance of archaeal ammonia monooxygenase subunit A encoding gene sequences in many environments have extended our perception of nitrifying microbial communities. Moreover, AOA are the only aerobic ammonia oxidizers known to be active in geothermal environments. Molecular data indicate that in many globally distributed terrestrial high-temperature habits a thaumarchaeotal lineage within the Nitrosopumilus cluster (also called "marine" group I.
View Article and Find Full Text PDFA community of acidochemolithotrophic microorganisms with a high oxidation rate of pyrrhotite-containing sulphide ore flotation concentrate was selected. The Acidithiobacillus caldus OP-1 and Ferroplasma acidiphilum OP-2 cultures were identified to be dominating members. The presence of the Acidithio- bacillusferrooxidans OP-3, Leptospirillumferriphilum OP-4, and Sulfobacillus thermosulfidooxidans OP-5 cultures in the community's composition was also mentioned.
View Article and Find Full Text PDFAboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore.
View Article and Find Full Text PDF