Mycosynthesis of silver nano-scale particles by fungi is an important aspect in nanotechnology due to its eco-friendly, safe, and cost-effective nature. It also provides protein-capped nanoparticles, which are very stable and have good dispersion. The Mycosynthesis of silver nano-scale particles (SNPs) by Trichoderma asperellum Filtrate (TAF) was evaluated.
View Article and Find Full Text PDFObjectives: The synthesis of nanoparticles using microorganisms and their metabolites is of increasing interest because they are potential producers of biocompatible and environmental friendly nanoparticles. Their nanoparticles can serve as potent alternatives to antibiotics against multidrug resistant (MDR) bacteria. The antibacterial potential of spp.
View Article and Find Full Text PDFBackground: Phyto-reduction using Senna alata methanol leaf extract for nanoparticle (NP) biosynthesis is of great importance for the production of value-added nanomaterial with antimicrobial potential.
Objectives: The aim of this study was to investigate the biosynthesis of zinc oxide nanoparticles (ZnONPs) using crude methanol leaf extract of S. alata (SaZnONPs), antimicrobial efficacy of this extract, optimization of its production parameters, and its application in cold cream formulation.
Background: Green route biosynthesis of silver nanoparticles using Trichoderma viride (T. viride) filtrate (TVFSNPs) can serve as an alternative to antibiotics and as an effective drug delivery to combat cancer and act as an immune-stimulator.
Objectives: To biosynthesize silver nanoparticles (SNPs) with T.