Publications by authors named "Buki Kwon"

Multi-UTR genes are widely transcribed and express their alternative 3'UTR isoforms in a cell type-specific manner. As transcriptional enhancers regulate mRNA expression, we investigated if they also regulate 3'UTR isoform expression. Endogenous enhancer deletion of the multi-UTR gene PTEN did not impair transcript production but prevented 3'UTR isoform switching which was recapitulated by silencing of an enhancer-bound transcription factor.

View Article and Find Full Text PDF

Wnt/ Wingless (Wg) is essential for embryonic development and adult homeostasis in all metazoans, but the mechanisms by which secreted Wnt/Wg is processed remain largely unknown. A Drosophila Sol narae (Sona) is a member of A Disintegrin And Metalloprotease with ThromboSpondin motif (ADAMTS) family, and positively regulates Wg signaling by promoting Wg secretion. Here we report that Sona and Wg are secreted by both conventional Golgi and exosomal transports, and Sona cleaves extracellular Wg at the two specific sites, leading to the generation of N-terminal domain (NTD) and C-terminal domain (CTD) fragments.

View Article and Find Full Text PDF

Two-dimensional (2D) nanomaterials, such as graphene-based materials and transition metal dichalcogenide (TMD) nanosheets, are promising materials for biomedical applications owing to their remarkable cytocompatibility and physicochemical properties. On the basis of their potent antibacterial properties, 2D materials have potential as antibacterial films, wherein the 2D nanosheets are immobilized on the surface and the bacteria may contact with the basal planes of 2D nanosheets dominantly rather than contact with the sharp edges of nanosheets. To address these points, in this study, we prepared an effective antibacterial surface consisting of representative 2D materials, i.

View Article and Find Full Text PDF

Highly conserved eukaryotic histones are polybasic proteins that package DNA into nucleosomes, a building block of chromatin, allowing extremely long DNA molecules to form compact and discrete chromosomes. The histone N-terminal tails that extend from the nucleosome core act as docking sites for many proteins through diverse post-translational modifications, regulating various DNA transactions. In this report, we present evidence that the nucleosomes can positively regulate the enzymatic activity of Rad27 (yeast Fen1), a major processing enzyme important for Okazaki fragment in eukaryotes.

View Article and Find Full Text PDF

Fen1 and Mus81-Mms4 are endonucleases involved in the processing of various DNA structural intermediates, and they were shown to have genetic and functional interactions with each other. Here, we show the in vivo significance of the interactions between Mus81 and Rad27 (yeast Fen1). The N-terminal 120 amino-acid (aa) region of Mus81, although entirely dispensable for its catalytic activity, was essential for the abilities of Mus81 to bind to and be stimulated by Rad27.

View Article and Find Full Text PDF

The correct removal of 5'-flap structures by Rad27 and Dna2 during Okazaki fragment maturation is crucial for the stable maintenance of genetic materials and cell viability. In this study, we identified RAD52, a key recombination protein, as a multicopy suppressor of dna2-K1080E, a lethal helicase-negative mutant allele of DNA2 in yeasts. In contrast, the overexpression of Rad51, which works conjointly with Rad52 in canonical homologous recombination, failed to suppress the growth defect of the dna2-K1080E mutation, indicating that Rad52 plays a unique and distinct role in Okazaki fragment metabolism.

View Article and Find Full Text PDF

MUS81 shares a high-degree homology with the catalytic XPF subunit of the XPF-ERCC1 endonuclease complex. It is catalytically active only when complexed with the regulatory subunits Mms4 or Eme1 in budding and fission yeasts, respectively, and EME1 or EME2 in humans. Although Mus81 complexes are implicated in the resolution of recombination intermediates in vivo, recombinant yeast Mus81-Mms4 and human MUS81-EME1 isolated from Escherichia coli fail to cleave intact Holliday junctions (HJs) in vitro.

View Article and Find Full Text PDF