Publications by authors named "Bui The Huy"

Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu ions, where Cu quenches the fluorescence of OFL static quenching.

View Article and Find Full Text PDF
Article Synopsis
  • Microfluidic paper-based analytical devices (μPADs) are praised for being affordable and portable tools for point-of-care testing, but traditional fabrication methods can be complex and costly, particularly in low-resource environments.
  • This research presents a new fabrication method for μPADs using 3D-printed chambers and super glue vapor, allowing for quick and easy production, effective in just 5 minutes without specialized training.
  • The study's significance lies in its introduction of a simplified way to create μPADs for detecting various analytes, including glucose and heavy metals, potentially broadening their use in diagnostics.
View Article and Find Full Text PDF

In this work, the perovskite LaZnO was synthesized via sol-gel method and applied for photocatalytic treatment of sulfamethizole (SMZ) antibiotics under visible light activation. SMZ was almost completely degraded (99.2% ± 0.

View Article and Find Full Text PDF

A new method utilizing fluorescent ratiometry is proposed for detecting putrescine and spermidine. The method involves the use of a fluorescent probe comprising a 2D halide perovskite synthesized from octadecylamine-iodine and PbI a grinding-sonicating technique, along with a Eu-complex. Upon excitation at 290 nm, the probe fluoresces at two distinguishable wavelengths.

View Article and Find Full Text PDF

The detection of harmful chemicals in the environment and for food safety is a crucial requirement. While traditional techniques such as GC-MS and HPLC provide high sensitivity, they are expensive, time-consuming, and require skilled labor. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool for detecting ultralow concentrations of chemical compounds and biomolecules.

View Article and Find Full Text PDF

Tannic acid (TA)-a natural product-is a polyphenol derivative that occurs in certain kinds of beverages. A large amount of TA could give rise to an unpleasant flavour and could negatively affect the human body by causing stomach irritation, abdominal pain, nausea, vomiting, and even death. Thus, the need exists for a simple TA detection procedure that meets specific criteria such as on-site analysis, portability, and affordability.

View Article and Find Full Text PDF

Heterojunction structures have attracted considerable attention for enhancing electron migration across interfaces. In this report, ZnBiO-ZnS(12%) heterojunction photocatalysts was found to be capable of degrading over 94% of indigo carmine in a 15 mg/L solution within 90 min of visible light irradiation at a catalytic dose of 1.0 g/L and pH 4.

View Article and Find Full Text PDF

Magnetic ZnFeO/BiVO/g-CN (ZBC) composites were prepared via a facile hydrothermal and calcination method for the degradation of a representative antibiotics lomefloxacin (LFX) under visible light irradiation. The optimal photocatalyst ZBC-10 with a ZnFeO:BiVO:g-CN mass ratio of 1:8:10 performed 96.1% removal of LFX after 105 min of illumination.

View Article and Find Full Text PDF

Luminescent inorganic lead halide perovskite nanoparticles lack stability in aqueous solutions, limiting their application to optical sensors. Here, hybrid CsPbBr-loaded MIP nanogels were developed with enhanced stability in aqueous media. Multifunctional MIP nanogels with antioxidant function and hydrophobic cavities were synthesized from HEMA derivatives in the presence of roxithromycin as a template.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) was employed to gain an understanding of the chemical enhancement mechanism of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), an Agent Orange, adsorbed on a silver substrate surface. Experimental measurements were performed using a micro-Raman spectrophotometer with an excitation wavelength of 532 nm and successfully detected 2,4,5-T at a relatively low concentration of 0.4 nM.

View Article and Find Full Text PDF

Bacteriophage (phage) is considered as one of the alternatives to antibiotics and an environmentally friendly approach to tackle antimicrobial resistance (AMR) in aquaculture. Here, we reported isolation, morphology and genomic characterizations of a newly isolated lytic phage, designated pAh6.2TG.

View Article and Find Full Text PDF

This study aimed to evaluate the health risks of cadmium (Cd), lead (Pb), inorganic arsenic (As), and nitrate exposure through the consumption of bivalves and vegetables collected from local markets in Ho Chi Minh City. The present study analyzed four favorite bivalve species (Meretrix lyrate; Perna viridis; Anadara subcrenata; Anadara granosa) for concentrations of Cd, Pb, and inorganic As and 9 vegetable species (Brassica juncea; Brassica integrifolia; Brassica rapa chinensis; Nasturtium officinale; Lactuca sativa; Ipomoea aquatica; Amaranthus gangeticus; Ipomoea batatas; Spinacia oleracea) for concentrations of Pb and nitrate. The target hazard quotient (THQ) and target cancer risk (TR) were calculated to estimate non-carcinogenic and carcinogenic health risks, respectively.

View Article and Find Full Text PDF

We developed a facile detection method of spermine based on the fluorescence (FL) quenching of the ciprofloxacin-Tb3+ complex, which shows astrong green emission. Ciprofloxacin (CP) makes efficient bondings to Tb3+ ion as a linker molecule through carboxylic and ketone groups to form a kind of lanthanide coordination polymer. The addition of spermine that competes with Tb3+ ions for the interaction with CP due to its positive charge brings about weakened coordination linkage of CP and Tb3+.

View Article and Find Full Text PDF

Novel polyepinephrine-modified NaYF:Yb,Tm upconversion luminescent nanoparticles (UCNP@PEP) were prepared via the self-polymerization of epinephrine on the surfaces of the UCNPs for selective sensing of Fe inside a cell and for intracellular imaging. The proposed UCNP@PEP probe is a strong blue light emitter (λ = 474 nm) upon exposure to an excitation wavelength of 980 nm. The probe was used for detecting Fe owing to the complexation reaction between UCNP@PEP and Fe, resulting in reduced upconversion luminescence (UCL) intensity.

View Article and Find Full Text PDF

A simple and fast method was developed for the determination of quercetin. The concentration of quercetin can be determined based on the fluorescence emission resulting from the coordinative interactions between quercetin and the yttrium ion (Y). Notably, a portable platform to quantitatively analyze quercetin was constructed.

View Article and Find Full Text PDF

Amine compounds are considered highly important in environmental pollution, industrial, and medicinal fields. The objective of this work was to develop a disposable, highly accurate, highly selective, and low-cost paper-based probe through the combination of color change of seven pH indicators for the detection of amine compounds in the gaseous state. The probe was designed with seven rings which were printed using the wax-printing technique and colored with different pH indicators.

View Article and Find Full Text PDF

It is greatly significant to develop a simple and rapid sensing method for triclosan (TCS) because it is a widely used and a chronically toxic compound that adversely affects biological organisms and human health. This paper presents the design and development of a novel simple optosensor that uses carboxylic group-functionalized NaYF:Yb/Er upconversion nanoparticles (UCNPs) coated with potassium permanganate (KMnO). The sensor enables the rapid, non-autofluorescence, sensitive, and selective detection of TCS based on the "turn off-on fluorescence" technique through fluorescence resonance energy transfer.

View Article and Find Full Text PDF

In this study, the complex degradation behavior of natural organic matter (NOM) was explored using photocatalytic oxidation systems with a novel catalyst based on a hybrid composite of zinc-bismuth oxides and g-CN (ZBO-CN). The photooxidation system demonstrated the effective removal of NOM under low-intensity visible light irradiation, presenting removal rates of 53-74% and 65-88% on the basis of dissolved organic carbon (DOC) and the UV absorption coefficient (UV), respectively, at 1.5 g/L of the catalyst.

View Article and Find Full Text PDF

A method is described for the colorimetric determination of chromate [chromium(VI)]. It is based on the use of graphene oxide (GO) nanoparticles acting as a peroxidase mimic. A blue color is generated by oxidation of 3,3,5,5-tetramethylbenzidine by HO which is catalyzed by GO.

View Article and Find Full Text PDF

Upconversion nanoparticles (UCNPs) possess a unique type of photoluminescence (PL) in which lower-energy excitation is converted into higher-energy emission via multi-photon absorption processes. In this work, we have used a facile one-step hydrothermal method promoted water solubility to synthesis NaLuGdF:Yb/Er(Tm) UCNPs coated with malonic acid (MA). Scanning electron microscopy images and X-ray diffraction patterns reveal sphere-shaped UCNPs with an average size of ~80nm crystallized in the cubic NaLuF structure.

View Article and Find Full Text PDF

Cuprous oxide (CuO) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated.

View Article and Find Full Text PDF

We report the effective synthesis of biocompatible upconversion nanoparticles (UCNP)-loaded phosphate micelles and successful delivery of UCNPs to prostate cancer cells via secreted phospholipase A2 (sPLA-2) enzyme cleavage of the loaded micelles for the first time. The activity of the (sPLA-2) enzyme toward the synthesized micelles was investigated and confirmed by LC-MS. TEM results showed that the micelles have a size distribution of 80 to 150 nm, whereas UCNP-loaded micelles range from 200 to 350 nm, indicating the successful loading of UCNPs.

View Article and Find Full Text PDF

The herbicide glyphosate (GLY) or 2,4-dichlorophenoxyacetic acids (2,4D) was intercalated in the interlayer region of a Zn-Al-layered double hydroxide (LDH) to obtain LDH-GLY or the LDH-2,4D hybrid composite because of its controlled release. Compared to the physically mixed herbicides, the LDH-herbicide hybrid composite displayed slow-release properties in decarbonated distilled water. The release rate of herbicides was found to be dependent on the carbonate and chloride anion concentrations in solution.

View Article and Find Full Text PDF

A novel TiO@MgO-FeO core-shell structure has been synthesized via a hydrolysis and co-precipitation method followed by calcination at 500 °C and has proven to be an efficient photocatalyst. The obtained TiO@MgO-FeO core-shell was characterized by scanning electron microscopy, X-ray diffraction, and UV-Vis diffused reflectance techniques. Its photocatalytic activity toward 2,4-dichlorophenoxyacetic acid (2,4-D) was investigated in aqueous solutions with and without visible light irradiation in the presence and absence of hydrogen peroxide.

View Article and Find Full Text PDF

The accumulation, elimination and effect of heavy metals on plasma cortisol levels in Oreochromis sp. were studied in the exposure and recovery phases. In the exposure phase, the mean rate of accumulation in the tissues was in the order gill > liver > muscle for Pb exposure and muscle > liver > gill for As exposure.

View Article and Find Full Text PDF