A reconfigurable metamaterial absorber (MA) in the microwave region is numerically and experimentally demonstrated based on a multi-layered metamaterial. The proposed structure can be mechanically switched between two different configurations to obtain designated absorption behaviors. By rotating the upper ring layer by multiples of 90 deg, two separated absorption modes of the MA are created.
View Article and Find Full Text PDFThis publisher's note corrects errors in Appl. Opt.61, 9078 (2022)APOPAI0003-693510.
View Article and Find Full Text PDFIn this paper, we present a flexible magnetic metamaterial structure for enhancing the efficiency of wireless power transfer (WPT) systems operating at 13.56 MHz. The metasurface between transmitter (Tx) and receiver (Rx) coils of the WPT system is constructed of a 3 × 5 metamaterial unit cell array with a total size of 150 × 300 mm.
View Article and Find Full Text PDFIn this article, we investigated the efficiency of a magnetic resonant wireless power transfer (MR-WPT) in conducting medium and found out an optimal frequency for designing the system. In conducting environment, the eddy current loss is generated by the high-frequency alternating currents in the coils. It is manifested by increased radiation resistance of resonator coil leads to decrease the quality factor (Q-factor), which reduces the wireless power transfer (WPT) efficiency in conducting medium.
View Article and Find Full Text PDFA simple design of a broadband multifunctional polarization converter using an anisotropic metasurface for X-band application is proposed. The proposed polarization converter consists of a periodic array of the two-corner-cut square patch resonators based on the FR-4 substrate that achieves both cross-polarization and linear-to-circular polarization conversions. The simulated results show that the polarization converter displays the linear cross-polarization conversion in the frequency range from 8 to 12 GHz with the polarization conversion efficiency above 90%.
View Article and Find Full Text PDFWe present a numerical study of thermo-tunable broadband-negative-permeability metamaterial based on second-order hybridization operating at the THz regime. The conventional metal is replaced by InSb, in which the temperature-dependent conductivity plays a key role in tuning the separation of second-order-hybridization magnetic-resonance modes. It is demonstrated that the hybridization in a simple disk-pair dimer can be tuned by temperature, leading to a significant broadening of the negative-permeability at THz frequencies.
View Article and Find Full Text PDFIn this paper, a broadband metamaterial microwave absorber is designed, simulated and measured. Differently from the traditional method which is only based on unit cell boundary conditions, we carried out full-wave finite integration simulations using full-sized configurations. Starting from an elementary unit cell structure, four kinds of coding metamaterial blocks, 2 × 2, 3 × 3, 4 × 4 and 6 × 6 blocks were optimized and then used as building blocks (meta-block) for the construction of numerous 12 × 12 topologies with a realistic size scale.
View Article and Find Full Text PDFAn integrated model utilizing external parasitic capacitors for a dual-band metamaterial perfect absorber (DMPA) is proposed and demonstrated in the UHF radio band. By adjusting the lumped capacitors on a simple meta-surface, the thickness of absorber is reduced to be only 1/378 and 1/320 with respect to the operating wavelength at 305 and 360.5 MHz, respectively.
View Article and Find Full Text PDFWe numerically and experimentally investigated a dual-band metamaterial perfect absorber (MPA), utilizing the near-field coupling of double split-ring resonators (DSRRs). Owing to the near-field coupling between resonators, two arms in each DSRR resonate in different phases, leading to a dual-band perfect absorption. The proposed MPA also exhibits polarization-insensitive behavior and maintains the high absorption above 90% up to a wide range of incident angle more than 45°.
View Article and Find Full Text PDFAn efficient resolution for ultrathin metamaterial perfect absorber (MPA) is proposed and demonstrated in the VHF radio band (30-300 MHz). By adjusting the lumped capacitors and the through vertical interconnects, the absorber is miniaturized to be only λ/816 and λ/84 for its thickness and periodicity with respect to the operating wavelength (at 102 MHz), respectively. The detailed simulation and calculation show that the MPA can maintain an absorption rate over 90% in a certain range of incident angle and with a wide variation of capacitance.
View Article and Find Full Text PDF