Garlic plants ( L.) produce antimicrobial compounds, such as diallyl thiosulfinate (allicin) and diallyl polysulfanes. Here, we investigated the transcriptome and protein -thioallylomes under allicin and diallyl tetrasulfane (DAS4) exposure in the Gram-positive bacterium .
View Article and Find Full Text PDFAims: In bacillithiol (BSH)-utilizing organisms, protein S-bacillithiolation functions as a redox switch in response to oxidative stress and protects critical Cys residues against overoxidation. In Bacillus subtilis, both the redox-sensing repressor OhrR and the methionine synthase MetE are redox controlled by S-bacillithiolation in vivo. Here, we identify pathways of protein de-bacillithiolation and test the hypothesis that YphP(BrxA) and YqiW(BrxB) act as bacilliredoxins (Brx) to remove BSH from OhrR and MetE mixed disulfides.
View Article and Find Full Text PDFAims: Protein S-bacillithiolation was recently discovered as important thiol protection and redox-switch mechanism in response to hypochlorite stress in Firmicutes bacteria. Here we used transcriptomics to analyze the NaOCl stress response in the mycothiol (MSH)-producing Corynebacterium glutamicum. We further applied thiol-redox proteomics and mass spectrometry (MS) to identify protein S-mycothiolation.
View Article and Find Full Text PDFNε-lysine acetylation was recently discovered on many bacterial proteins that function in diverse cellular processes. Thus, many questions remain unanswered. For example, what mechanisms regulate lysine acetylation? Does acetylation affect physiology? To help answer these questions, we studied the Escherichia coli response regulator and transcription factor RcsB, which is reported to be acetylated in vitro.
View Article and Find Full Text PDFAims: Protein S-bacillithiolations are mixed disulfides between protein thiols and the bacillithiol (BSH) redox buffer that occur in response to NaOCl in Bacillus subtilis. We used BSH-specific immunoblots, shotgun liquid chromatography (LC)-tandem mass spectrometry (MS/MS) analysis and redox proteomics to characterize the S-bacillithiolomes of B. subtilis, B.
View Article and Find Full Text PDFBacillus subtilis encodes redox-sensing MarR-type regulators of the OhrR and DUF24-families that sense organic hydroperoxides, diamide, quinones or aldehydes via thiol-based redox-switches. In this article, we characterize the novel redox-sensing MarR/DUF24-family regulator HypR (YybR) that is activated by disulphide stress caused by diamide and NaOCl in B. subtilis.
View Article and Find Full Text PDFSpx is a global regulator of genes that are induced by disulfide stress in Bacillus subtilis. The regulon that it governs is comprised of over 120 genes based on microarray analysis, although it is not known how many of these are under direct Spx control. Most of the Spx-regulated genes (SRGs) are of unknown function, but many encode products that are conserved in low %GC Gram-positive bacteria.
View Article and Find Full Text PDFProtein S-thiolation is a post-translational thiol-modification that controls redox-sensing transcription factors and protects active site cysteine residues against irreversible oxidation. In Bacillus subtilis the MarR-type repressor OhrR was shown to sense organic hydroperoxides via formation of mixed disulfides with the redox buffer bacillithiol (Cys-GlcN-Malate, BSH), termed as S-bacillithiolation. Here we have studied changes in the transcriptome and redox proteome caused by the strong oxidant hypochloric acid in B.
View Article and Find Full Text PDFIn eukaryotes, lysine acetylation is a well-established post-translational modification that has been implicated in virtually all aspects of eukaryotic physiology. Although homologues of the enzymes that catalyse protein acetylation are widely conserved and distributed among bacterial species, not much is known about the impact of protein acetylation on bacterial physiology. Here, we present evidence that the Gcn5-like acetyltransferase YfiQ and the sirtuin deacetylase CobB play crucial roles in the transcription regulation of the periplasmic stress-responsive promoter cpxP when cells of Escherichia coli grow in the presence of glucose, an environment that induces protein acetylation.
View Article and Find Full Text PDFThe MarR/DUF24-type repressor YodB controls the azoreductase AzoR1, the nitroreductase YodC and the redox-sensing regulator Spx in response to quinones and diamide in Bacillus subtilis. Previously, we showed using a yodBCys6-Ala mutant that the conserved Cys6 apparently contributes to the DNA-binding activity of YodB in vivo. Here, we present data that mutation of Cys6 to Ser led to a form of the protein that was reduced in redox-sensing in response to diamide and 2-methylhydroquinone (MHQ) in vivo.
View Article and Find Full Text PDFThe redox-sensing MarR/DUF24-type repressor YodB controls expression of the azoreductase AzoR1 and the nitroreductase YodC that are involved in detoxification of quinones and diamide in Bacillus subtilis. In the present paper, we identified YodB and its paralog YvaP (CatR) as repressors of the yfiDE (catDE) operon encoding a catechol-2,3-dioxygenase that also contributes to quinone resistance. Inactivation of both CatR and YodB is required for full derepression of catDE transcription.
View Article and Find Full Text PDF