Publications by authors named "Bui Kar Ip"

Neurogenesis of excitatory neurons in the developing human cerebral neocortex is a complex and dynamic set of processes and the exact mechanisms controlling the specification of human neocortical neuron subtypes are poorly understood due to lack of relevant cell models available. It has been shown that the transcription factors Pax6, Tbr2 and Tbr1, which are sequentially expressed in the rodent neocortex, regulate and define corticogenesis of glutamatergic neocortical neurons. In humans the homologues of these genes are generally expressed in a similar pattern, but with some differences.

View Article and Find Full Text PDF

Developing neocortical progenitors express transcription factors in gradients that induce programs of region-specific gene expression. Our previous work identified anteriorly upregulated expression gradients of a number of corticofugal neuron-associated gene probe sets along the anterior-posterior axis of the human neocortex (8-12 postconceptional weeks [PCW]). Here, we demonstrate by real-time polymerase chain reaction, in situ hybridization and immunohistochemistry that 3 such genes, ROBO1, SRGAP1, and CTIP2 are highly expressed anteriorly between 8-12 PCW, in comparison with other genes (FEZF2, SOX5) expressed by Layer V, VI, and subplate neurons.

View Article and Find Full Text PDF

The subplate is a largely transient zone containing precocious neurons involved in several key steps of cortical development. The majority of subplate neurons form a compact layer in mouse, but are dispersed throughout a much larger zone in the human. In rodent, subplate neurons are among the earliest born neocortical cells, whereas in primate, neurons are added to the subplate throughout cortical neurogenesis.

View Article and Find Full Text PDF