The efforts of this study aimed to evaluate the feasibility of the nanotubular halloysites in weathered pegmatites (NaHWP) for removing heavy metals (i.e., Cd, Pb) from water.
View Article and Find Full Text PDFHeavy metals in water and wastewater are taken into account as one of the most hazardous environmental issues that significantly impact human health. The use of biochar systems with different materials helped significantly remove heavy metals in the water, especially wastewater treatment systems. Nevertheless, heavy metal's sorption efficiency on the biochar systems is highly dependent on the biochar characteristics, metal sources, and environmental conditions.
View Article and Find Full Text PDFHeavy metal adsorption onto biochar is an effective method for the treatment of the heavy metal contamination of water and wastewater. This study aims to evaluate the heavy metals sorption efficiency of different biochar characteristics and propose a novel intelligence method for predicting the sorption efficiency of heavy metal onto biochar with high accuracy based on the back-propagation neural network (BPNN) and fuzzy C-means clustering algorithm (FCM), named as FCM-BPNN. Accordingly, the FCM algorithm was used to simulate the properties of metal adsorption data and divide them into clusters with similar features.
View Article and Find Full Text PDFAlong with the gradually increasing yield of the residues, appropriate management and treatment of the residues have become an urgent environmental protection problem. This work investigated the preparation of a glass-ceramic from a mixture of bottom ash and fly ash by petrurgic method. The nucleation and crystallization kinetics of the new glass-ceramic can be obtained by melting the mixture of 80% bottom ash and 20% fly ash at 950 °C, which was then cooled in the furnace for 1h.
View Article and Find Full Text PDFIn this study the effective utilization of two types of municipal solid waste incinerator (MSWI) ashes, namely air-cooled ash (ACS) and water-cooled ash (WCS) samples obtained from a municipal solid waste incineration plant, was examined by applying zeolitic material synthesis and silica extraction. The influence of the experimental conditions including the ratio of sample : NaOH solution, the reaction temperature and time, and the concentration of NaOH solution were investigated. The results for the 25 experimental trials can be summarized as: (1) the formation of tobermorite and/or pectolite-1A as a major component in most conditions; (2) the synthesis of hydroxycancrinite as a major phase at 200 degrees C; (3) a dramatic increase in the extracted SiO(2) yield at 1 : 30 value of sample : NaOH ratio and 200 degrees C, even at short reaction times; and (4) relatively high SiO(2) yields for WCS ashes rather than ACS ashes.
View Article and Find Full Text PDFChem Commun (Camb)
October 2009
Ordered single-walled hollow aluminogermanate (ALGE) nanospheres (NSs) with average monodisperse diameters of 5 nm have been synthesized for the first time using simple pH control. This involved basification of the ALGE precursors (having an Al/Ge ratio of 1.33) to a pH value of 13, followed by immediate acidification to a pH value of 9.
View Article and Find Full Text PDF