Publications by authors named "Buhler E"

Background: Congenital cytomegalovirus (CMV) infections represent one leading cause of human neurodevelopmental disorders. Despite their high prevalence and severity, no satisfactory therapy is available and pathophysiology remains elusive. The pathogenic involvement of immune processes occurring in infected developing brains has been increasingly documented.

View Article and Find Full Text PDF
Article Synopsis
  • The effectiveness of inhibitory neurotransmission in neurons is influenced by chloride levels, which are controlled by cation-chloride cotransporters NKCC1 and KCC2, with brain-derived neurotrophic factor (BDNF) playing a significant role in their function.
  • This study explored how both precursor BDNF (proBDNF) and mature BDNF (mBDNF) affect chloride regulation in immature rat neurons and their impact on behavior, finding that both forms inhibit chloride extrusion.
  • Results indicate that proBDNF enhances the endocytosis of KCC2 and causes sensory and behavioral issues in developing rats, highlighting BDNF's important role in regulating chloride transport and inhibitory synaptic transmission.
View Article and Find Full Text PDF

Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive.

View Article and Find Full Text PDF

Objective: Genetic variations in proteins of the mechanistic target of rapamycin (mTOR) pathway cause a spectrum of neurodevelopmental disorders often associated with brain malformations and with intractable epilepsy. The mTORopathies are characterized by hyperactive mTOR pathway and comprise tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type II. How hyperactive mTOR translates into abnormal neuronal activity and hypersynchronous network remains to be better understood.

View Article and Find Full Text PDF

Post-translationally modified peptides are now recognized as important regulators of plant stress responses. We recently identified the sulfated CLE-LIKE6 (CLEL6) peptide as a negative regulator of anthocyanin biosynthesis in dark-grown and in light-stressed Arabidopsis seedlings. The function of CLEL6 depends on proteolytic processing by subtilisin-like serine proteinase SBT6.

View Article and Find Full Text PDF

Posttranslationally modified peptides are now recognized as important regulators of plant stress responses. Here, we identified the small sulfated CLE-LIKE6 (CLEL6) peptide as a negative regulator of anthocyanin biosynthesis in etiolated and in light-stressed Arabidopsis (Arabidopsis thaliana) seedlings. CLEL6 function depends on proteolytic processing of the CLEL6 precursor by subtilisin-like serine proteinase 6.

View Article and Find Full Text PDF

Gliomas are primary malignant brain tumors. These tumors seem to be more and more frequent, not only because of a true increase in their incidence, but also due to the increase in life expectancy of the general population. Among gliomas, malignant gliomas and more specifically glioblastomas (GBM) are a challenge in their diagnosis and treatment.

View Article and Find Full Text PDF

The unidirectional rotation of chemically crosslinked light-driven molecular motors is shown to progressively shift the swelling equilibrium of hydrogels. The concentration of molecular motors and the initial strand density of the polymer network are key parameters to modulate the macroscopic contraction of the material, and both parameters can be tuned using polymer chains of different molecular weights. These findings led to the design of optimized hydrogels revealing a half-time contraction of approximately 5 min.

View Article and Find Full Text PDF

Malformations of cortical development represent a major cause of epilepsy in childhood. However, the pathological substrate and dynamic changes leading to the development and progression of epilepsy remain unclear. Here, we characterized an etiology-relevant rat model of subcortical band heterotopia (SBH), a diffuse type of cortical malformation associated with drug-resistant seizures in humans.

View Article and Find Full Text PDF

Importance: Mucous membrane pemphigoid (MMP) is a rare and heterogeneous subepithelial autoimmune bullous disease with predominant mucosal involvement. Characteristics associated with the disease course and complications are yet to be delineated.

Objectives: To evaluate characteristics associated with refractory disease course and blindness among patients with MMP and to estimate the association of different treatment strategies with the prognostic outcome.

View Article and Find Full Text PDF

The case in this report presents an alternative, partially CAD/CAM-based fabrication of a gingival epithesis in a 48-years-old female patient. The patient suffered from a periodontits stage III, grade C. After a non-surgical periodontal treatment with adjunctive systemic antibiotics, the patient developed severe circumferential gingival recessions on the upper frontal teeth.

View Article and Find Full Text PDF

The recent success of mRNA vaccines using lipid-based vectors highlights the importance of strategies for nucleotide delivery under the pandemic situation. Although current mRNA delivery is focused on lipid-based vectors, still they need to be optimized for increasing stability, targeting, and efficiency, and for reducing toxicity. In this regard, other vector systems featuring smart strategies such as pH-responsive degradability and endosomal escape ability hold the potential to overcome the current limitations.

View Article and Find Full Text PDF

In the present manuscript, we describe how we successfully used ligand-based virtual screening (LBVS) to identify two small-molecule, drug-like hit classes with excellent ADMET profiles against the difficult to address microbial enzyme 1-deoxy-d-xylulose-5-phosphate synthase (DXPS). In the fight against antimicrobial resistance (AMR), it has become increasingly important to address novel targets such as DXPS, the first enzyme of the 2--methyl-d-erythritol-4-phosphate (MEP) pathway, which affords the universal isoprenoid precursors. This pathway is absent in humans but essential for pathogens such as , making it a rich source of drug targets for the development of novel anti-infectives.

View Article and Find Full Text PDF

Importance: Mucous membrane pemphigoid (MMP) is a rare, heterogeneous subepithelial autoimmune bullous disease. The association between its clinical and immunological features is yet to be fully evaluated.

Objectives: To characterize the clinical, immunoserological, and immunopathological characteristics of patients with MMP and to identify site- and autoantigen-specific characteristics.

View Article and Find Full Text PDF

Increasing drought stress poses a severe threat to agricultural productivity. Plants, however, have evolved numerous mechanisms to cope with such environmental stress. Here we report that the stress-induced production of a peptide signal contributes to stress tolerance.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) and its patched-smoothened receptor complex control a variety of functions in the developing central nervous system, such as neural cell proliferation and differentiation. Recently, Shh signaling components have been found to be expressed at the synaptic level in the postnatal brain, suggesting a potential role in the regulation of synaptic transmission. Using electroporation of constitutively active and negative-phenotype forms of the Shh signal transducer smoothened (Smo), we studied the role of Smo signaling in the development and maturation of GABAergic transmission in the somatosensory cortex.

View Article and Find Full Text PDF

Mixing negatively charged polyelectrolyte (PEL) with positively charged gold nanoparticles (Au NPs) in aqueous solution results in electrostatics complexes of different shapes and compactness. Here, when complexing with a semirigid PEL hyaluronic acid (HA), we obtain crystals made of nanoparticles in a new region of the phase diagram, as evidenced by small-angle X-ray scattering (SAXS). The Au NPs were initially well dispersed in solution; their size distribution is well controlled but does not need to be extremely narrow.

View Article and Find Full Text PDF

While chromosome 1p36 deletion syndrome is one of the most common terminal subtelomeric microdeletion syndrome, 1p36 microduplications are rare events. Polymicrogyria (PMG) is a brain malformation phenotype frequently present in patients with 1p36 monosomy. The gene whose haploinsufficiency could cause this phenotype remains to be identified.

View Article and Find Full Text PDF

The detailed structure of active polymer gels built by integrating light-driven rotary molecular motors as reticulation units in polymer networks is discussed as a function of gel composition. Upon light-irradiation, the collective rotation of molecular motors is translated into the macroscopic contraction of the gels through polymer chains twisting. The major role of the characteristic ratio c/c* (c* being the overlap concentration of the polymer-motor conjugates before crosslinking) on the contraction efficiency is exploited.

View Article and Find Full Text PDF

Dilute solutions of electronically active molecules capable of irradiation-driven supramolecular self-assembly are studied by dynamic light scattering. We detect unusual well-defined oscillations in the long time range of the homodyne intensity correlation function for all solutions that were irradiated with white light prior to the measurements. The oscillation effect is attributed to the local laser-induced heating of the samples due to strongly enhanced absorption manifested by the supramolecular filaments.

View Article and Find Full Text PDF

Studies conducted in human and rodent models have suggested that preexisting neurodevelopmental defects could predispose immature brains to febrile seizures (FS). However, the impact of the anatomical extent of preexisting cortical malformations on FS susceptibility was never assessed. Here, we induced hyperthermic seizures (HS) in rats with bilateral subcortical band heterotopia (SBH) and found variable degrees of HS susceptibility depending on inter-individual anatomical differences in size and extent of SBH.

View Article and Find Full Text PDF

Single germline or somatic activating mutations of mammalian target of rapamycin (mTOR) pathway genes are emerging as a major cause of type II focal cortical dysplasia (FCD), hemimegalencephaly (HME) and tuberous sclerosis complex (TSC). A double-hit mechanism, based on a primary germline mutation in one allele and a secondary somatic hit affecting the other allele of the same gene in a small number of cells, has been documented in some patients with TSC or FCD. In a patient with HME, severe intellectual disability, intractable seizures and hypochromic skin patches, we identified the ribosomal protein S6 (RPS6) p.

View Article and Find Full Text PDF

High-throughput siRNA screens were only recently applied to cell factories to identify novel engineering targets which are able to boost cells towards desired phenotypes. While siRNA libraries exist for model organisms such as mice, no CHO-specific library is publicly available, hindering the application of this technique to CHO cells. The optimization of these cells is of special interest, as they are the main host for the production of therapeutic proteins.

View Article and Find Full Text PDF

The networking of individual artificial molecular motors into collective actuation systems is a promising approach for the design of active materials working out of thermodynamic equilibrium. Here, we report the first mechanical studies on active polymer gels built by integrating light-driven rotary molecular motors as reticulation units in polymer networks. We correlate the volume ratio before and after light irradiation with the change of the elastic modulus, and we reveal the universal maximum mechanical efficiency of such gels related to their critical overlap concentration before chemical reticulation.

View Article and Find Full Text PDF

Mutations in TBC1D24 are described in patients with a spectrum of neurological diseases, including mild and severe epilepsies and complex syndromic phenotypes such as Deafness, Onycodystrophy, Osteodystrophy, Mental Retardation and Seizure (DOORS) syndrome. The product of TBC1D24 is a multifunctional protein involved in neuronal development, regulation of synaptic vesicle trafficking, and protection from oxidative stress. Although pathogenic mutations in TBC1D24 span the entire coding sequence, no clear genotype/phenotype correlations have emerged.

View Article and Find Full Text PDF