Voluntary rapid eye movements (saccades) redirect the fovea toward objects of visual interest. The saccadic system can be considered as a dual-mode system: in one mode the eye is fixating, in the other it is making a saccade. In this review, we consider two examples of dysfunctional saccades, interrupted saccades in late-onset Tay-Sachs disease and gaze-position dependent opsoclonus after concussion, which fail to properly shift between fixation and saccade modes.
View Article and Find Full Text PDFDeficits of convergence and accommodation are common following traumatic brain injury, including mild traumatic brain injury, although the mechanism and localization of these deficits have been unclear and supranuclear control of the near-vision response has been incompletely understood. We describe a patient who developed profound instability of the near-vision response with inability to maintain convergence and accommodation following mild traumatic brain injury, who was identified to have a structural lesion on brain MRI in the pulvinar of the caudal thalamus, the pretectum, and the rostral superior colliculus. We discuss the potential relationship between posttraumatic clinical near-vision response deficits and the MRI lesion in this patient.
View Article and Find Full Text PDFThe nodulus and rostral-ventral uvula of the vestibulo-cerebellum play a critical role in orienting eye velocity of the slow component of the angular vestibulo-ocular reflex (aVOR) to gravito-inertial acceleration (GIA). This is done by altering the time constants of "velocity storage" in the vestibular system and by generating "cross-coupled" eye velocities that shift the eye velocity vector from along the body yaw axis to the yaw axis in a spatial frame. In this report, we show that eye velocity generated through the aVOR by constant velocity centrifugation in the monkey orients to the GIA in space, regardless of the position of the head with respect to the axis of rotation.
View Article and Find Full Text PDF1. Crossing fibers were sectioned at the midline of the medulla caudal to the abducens nucleus in four cynomolgus monkeys. In two animals the lesions caused the time constant of horizontal and vertical per- and post-rotatory nystagmus to fall to 5-8 s.
View Article and Find Full Text PDFQuantitative, morphometric studies of the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) were performed on the brains of four patients with Huntington's disease (HD) who had shown slow vertical saccades, and on the brains of three control subjects. Only one HD brain showed a statistically significant decrease in the number of larger neurons in the riMLF though all four brains showed non-specific gliosis. Taken with results from physiological and other clinical studies, the present data suggest that slow vertical saccades in HD are due, at least in part, to disordered inputs to the riMLF.
View Article and Find Full Text PDF