Hepatic glucose phosphorylation by GK (glucokinase) is regulated by GKRP (GK regulatory protein). GKRP forms a cytosolic complex with GK followed by nuclear import and storage, leading to inhibition of GK activity. This process is initiated by low glucose, but reversed nutritionally by high glucose and fructose or pharmacologically by GKAs (GK activators) and GKRPIs (GKRP inhibitors).
View Article and Find Full Text PDFWe investigated how glycerol, urea, glucose and a GKA influence kinetics and stability of wild-type and mutant GK. Glycerol and glucose stabilized GK additively. Glycerol barely affected the TF spectra of all GKs but decreased k(cat), glucose S(0.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2012
It was reported previously that isolated human islets from individuals with type 2 diabetes mellitus (T2DM) show reduced glucose-stimulated insulin release. To assess the possibility that impaired bioenergetics may contribute to this defect, glucose-stimulated respiration (Vo(2)), glucose usage and oxidation, intracellular Ca(2+), and insulin secretion (IS) were measured in pancreatic islets isolated from three healthy and three type 2 diabetic organ donors. Isolated mouse and rat islets were studied for comparison.
View Article and Find Full Text PDFGK (glucokinase) is activated by glucose binding to its substrate site, is inhibited by GKRP (GK regulatory protein) and stimulated by GKAs (GK activator drugs). To explore further the mechanisms of these processes we studied pure recombinant human GK (normal enzyme and a selection of 31 mutants) using steady-state kinetics of the enzyme and TF (tryptophan fluorescence). TF studies of the normal binary GK-glucose complex corroborate recent crystallography studies showing that it exists in a closed conformation greatly different from the open conformation of the ligand-free structure, but indistinguishable from the ternary GK-glucose-GKA complex.
View Article and Find Full Text PDFObjective: To evaluate the heterogeneity in the clinical expression in a family with glucokinase mature-onset diabetes of the young (GCK-MODY).
Research Design And Methods: Members (three generations) of the same family presented either with overt neonatal hyperglycemia, marked postprandial hyperglycemia, or glucosuria. Homeostasis model assessment of insulin resistance (HOMA(IR)) and insulinogenic and disposition indexes were calculated.
Objective: Heterozygous activating mutations of glucokinase have been reported to cause hypoglycemia attributable to hyperinsulinism in a limited number of families. We report three children with de novo glucokinase hyperinsulinism mutations who displayed a spectrum of clinical phenotypes corresponding to marked differences in enzyme kinetics.
Research Design And Methods: Mutations were directly sequenced, and mutants were expressed as glutathionyl S-transferase-glucokinase fusion proteins.
Pancreatic beta cells are hyper-responsive to amino acids but have decreased glucose sensitivity after deletion of the sulfonylurea receptor 1 (SUR1) both in man and mouse. It was hypothesized that these defects are the consequence of impaired integration of amino acid, glucose, and energy metabolism in beta cells. We used gas chromatography-mass spectrometry methodology to study intermediary metabolism of SUR1 knock-out (SUR1(-/-)) and control mouse islets with d-[U-(13)C]glucose as substrate and related the results to insulin secretion.
View Article and Find Full Text PDFTryptophan fluorescence was used to study GK (glucokinase), an enzyme that plays a prominent role in glucose homoeostasis which, when inactivated or activated by mutations, causes diabetes mellitus or hypoglycaemia in humans. GK has three tryptophan residues, and binding of D-glucose increases their fluorescence. To assess the contribution of individual tryptophan residues to this effect, we generated GST-GK [GK conjugated to GST (glutathione transferase)] and also pure GK with one, two or three of the tryptophan residues of GK replaced with other amino acids (i.
View Article and Find Full Text PDFFuel stimulation of insulin secretion from pancreatic beta-cells is thought to be mediated by metabolic coupling factors that are generated by energized mitochondria, including protons, adenine nucleotides, and perhaps certain amino acids (AA), as for instance aspartate, glutamate, or glutamine (Q). The goal of the present study was to evaluate the role of such factors when insulin release (IR) is stimulated by glucose or AA, alone or combined, using (31)P, (23)Na and (1)H NMR technology, respirometry, and biochemical analysis to study the metabolic events that occur in continuously superfused mouse beta-HC9 cells contained in agarose beads and enhanced by the phosphodiesterase inhibitor IBMX. Exposing beta-HC9 cells to high glucose or 3.
View Article and Find Full Text PDFEnzymatic activity of glucokinase was demonstrated, quantitated, and characterized kinetically in rat and mouse pituitary extracts using a highly specific and sensitive spectrometric assay. A previously proposed hypothesis that the glucokinase gene might be expressed in the pituitary corticotrophic cells was therefore reexamined using mRNA in situ hybridization and immunohistochemical techniques. No evidence was found that corticotrophs are glucokinase positive, and the identity of glucokinase-expressing cells remains to be determined.
View Article and Find Full Text PDFGlucokinase functions as a glucose sensor in pancreatic beta-cells and regulates hepatic glucose metabolism. A total of 83 probands were referred for a diagnostic screening of mutations in the glucokinase (GCK) gene. We found 11 different mutations (V62A, G72R, L146R, A208T, M210K, Y215X, S263P, E339G, R377C, S453L, and IVS5 + 1G>C) in 14 probands.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
September 2006
Neural and endocrine factors (i.e., Ach and GLP-1) restore defective glucose-stimulated insulin release in pancreatic islets lacking sulfonylurea type 1 receptors (SUR1(-/-)) (Doliba NM, Qin W, Vatamaniuk MZ, Li C, Zelent D, Najafi H, Buettger CW, Collins HW, Carr RD, Magnuson MA, and Matschinsky FM.
View Article and Find Full Text PDFGlucokinase (GCK) serves as the pancreatic glucose sensor. Heterozygous inactivating GCK mutations cause hyperglycemia, whereas activating mutations cause hypoglycemia. We studied the GCK V62M mutation identified in two families and co-segregating with hyperglycemia to understand how this mutation resulted in reduced function.
View Article and Find Full Text PDFThe enzyme GK (glucokinase), which phosphorylates glucose to form glucose 6-phosphate, serves as the glucose sensor of insulin-producing beta-cells. GK has thermodynamic, kinetic, regulatory and molecular genetic characteristics that are ideal for its glucose sensor function and allow it to control glycolytic flux of the beta-cells as indicated by control-, elasticity- and response-coefficients close to or larger than 1.0.
View Article and Find Full Text PDFChildren with hypoglycemia due to recessive loss of function mutations of the beta-cell ATP-sensitive potassium (K(ATP)) channel can develop hypoglycemia in response to protein feeding. We hypothesized that amino acids might stimulate insulin secretion by unknown mechanisms, because the K(ATP) channel-dependent pathway of insulin secretion is defective. We therefore investigated the effects of amino acids on insulin secretion and intracellular calcium in islets from normal and sulfonylurea receptor 1 knockout (SUR1-/-) mice.
View Article and Find Full Text PDFInhibition of ATP-sensitive K+ (K(ATP)) channels by an increase in the ATP/ADP ratio and the resultant membrane depolarization are considered essential in the process leading to insulin release (IR) from pancreatic beta-cells stimulated by glucose. It is therefore surprising that mice lacking the sulfonylurea type 1 receptor (SUR1-/-) in beta-cells remain euglycemic even though the knockout is expected to cause hypoglycemia. To complicate matters, isolated islets of SUR1-/- mice secrete little insulin in response to high glucose, which extrapolates to hyperglycemia in the intact animal.
View Article and Find Full Text PDFGlucokinase (GCK) is a key regulatory enzyme in the pancreatic beta-cell and catalyzes the rate-limiting step for beta-cell glucose metabolism. We report two novel GCK mutations (T65I and W99R) that have arisen de novo in two families with familial hypoglycemia. Insulin levels, although inappropriately high for the degree of hypoglycemia, remain regulated by fluctuations in glycemia, and pancreatic histology was normal.
View Article and Find Full Text PDFCulturing rat islets in high glucose (HG) increased 1-(14)C-alpha-ketoisocaproate (KIC) oxidation compared with culturing them in low glucose. Leucine caused insulin secretion (IS) in low glucose but not in HG rat islets, whereas KIC did so in both. Pretreatment with HG for 40 min abolished leucine stimulation of IS by mouse islets and prevented the cytosolic Ca(2+) rise without inhibiting IS and Ca(2+) increments caused by KIC.
View Article and Find Full Text PDFIn the present study, noninvasive (31)P and (23)Na(+)-nuclear magnetic resonance (NMR) technology and respirometry were used to compare the effect of high glucose (30 mmol/l) with the effect of the antidiabetic sulfonylurea (SU) compound glyburide (GLY) on energy metabolism, Na(+) flux, insulin, and cAMP release of continuously superfused beta-HC9 cells encapsulated in microscopic agarose beads. Both high glucose and GLY increased oxygen consumption in beta-HC9 cells (15-30%) with a maximal effect at 8 mmol/l for glucose and at 250 nmol/l for GLY. At the same time, insulin release from beta-cells increased by 15- and 25-fold with high glucose or GLY, respectively.
View Article and Find Full Text PDFIn this study, a second case of hyperinsulinemic hypoglycemia due to activation of glucokinase is reported. The 14-year-old proband had a history of neonatal hypoglycemia, treated with diazoxide. He was admitted with coma and convulsions due to nonketotic hypoglycemia.
View Article and Find Full Text PDFAims/hypothesis: Mutations of the glucokinase gene cause hyperglycaemia or hypoglycaemia. A quantitative understanding of these defects of glucose homeostasis linked to the glucokinase gene was lacking. Therefore a database of kinetic variables of wild-type and 20 missense mutants of glucokinase was developed and used in mathematical modelling to predict the thresholds for glucose-stimulated insulin release.
View Article and Find Full Text PDFMutations in the glucokinase (GK) gene cause type-2 maturity-onset diabetes of the young type 2 (MODY-2) and GK-linked hyperinsulinaemia (GK-HI). Recombinant adenoviruses expressing the human wild-type islet GK or one of four mutant forms of GK, (the MODY-2 mutants E70K, E300K and V203A and the GK-HI mutant V455M) were transduced into glucose-responsive insulin-secreting beta-HC9 cells and tested functionally in order to initiate the first analysis in vivo of recombinant wild-type and mutant human islet GK. Kinetic analysis of wild-type human GK showed that the glucose S(0.
View Article and Find Full Text PDFHyperinsulinaemia in the fasting state and a blunted insulin secretory response to acute glucose stimulation are commonly observed in obesity associated non-insulin-dependent diabetes mellitus. Hyperlipidaemia is a hallmark of obesity and may play a role in the pathogenesis of this beta-cell dysfunction because glucose metabolism in pancreatic beta cells may be altered by the increased lipid load. We tested this hypothesis by assessing the chronic effect of oleic acid on glucose metabolism and its relationship with glucose-induced insulin release in beta HC9 cells in tissue culture.
View Article and Find Full Text PDFGlucose metabolism and its relationship with glucose-induced insulin release were studied in beta HC9 and beta TC3 cells to identify and characterize key factors controlling the intermediary metabolism of glucose and glucose-induced insulin release. The beta HC9 cell line, derived from pancreatic islets with beta-cell hyperplasia, is characterized by a normal concentration-dependency curve for glucose-stimulated insulin release, whereas the beta TC3 cell line, derived from pancreatic beta-cell tumors, shows a marked leftward shift of this curve. Maximum velocity and the Michaelis-Menten constant of glucose uptake in beta HC9 and beta TC3 cells were similar, even though GLUT-2 expression in these two cell lines differed.
View Article and Find Full Text PDFPreviously constructed protein databases for two stages of preimplantation mouse embryogenesis, the compacted eight-cell stage and the fully expanded blastocyst stage, have been used to analyze the effects of insulin, IGF-I, and IGF-II on protein synthesis in these developmental stages. Proteins were labeled by placing, for 2 hr, synchronous cohorts of 35-50 embryos into human tubal fluid (HTF) medium containing L-[35S]-methionine (1 mCi/ml) in the presence or absence of one of the growth factors. The embryos were then washed with medium and lysed.
View Article and Find Full Text PDF