Background: Protein Kinase C (PKC) is a promiscuous serine/threonine kinase regulating vasodilatory responses in vascular endothelial cells. Calcium-dependent PKCbeta (PKCβ) and calcium-independent PKCeta (PKCη) have both been implicated in the regulation and dysfunction of endothelial responses to shear stress and agonists.
Objective: We hypothesized that PKCβ and PKCη differentially modulate shear stress-induced nitric oxide (NO) production by regulating the transduced calcium signals and the resultant eNOS activation.
Endothelial dysfunction, characterised by impaired nitric oxide (NO) bioavailability, arises in response to a variety of cardiovascular risk factors and precedes atherosclerosis. NO is produced by tight regulation of endothelial nitric oxide synthase (eNOS) activity in response to vasodilatory stimuli. This regulation of eNOS is mediated in part by store-operated calcium entry (SOCE).
View Article and Find Full Text PDFIntroduction: Colocalization of endothelial nitric oxide synthase (eNOS) and capacitative Ca entry (CCE) channels in microdomains such as cavaeolae in endothelial cells (ECs) has been shown to significantly affect intracellular Ca dynamics and NO production, but the effect has not been well quantified.
Methods: We developed a two-dimensional continuum model of an EC integrating shear stress-mediated ATP production, intracellular Ca mobilization, and eNOS activation to investigate the effects of spatial colocalization of plasma membrane eNOS and CCE channels on Ca dynamics and NO production in response to flow-induced shear stress. Our model examines the hypothesis that subcellular colocalization of cellular components can be critical for optimal coupling of NO production to blood flow.
Objectives: The effect of NO on smooth muscle cell contractility is crucial in regulating vascular tone, blood flow, and O delivery. Quantitative predictions for interactions between the NO production rate and the myogenic response for microcirculatory blood vessels are lacking.
Methods: We developed a computational model of a branching microcirculatory network with four representative classes of resistance vessels to predict the effect of endothelium-derived NO on the microvascular pressure-flow response.
Nitric oxide (NO) generated from nitrite through nitrite reductase activity in red blood cells has been proposed to play a major role in hypoxic vasodilation. However, we have previously predicted from mathematical modeling that much more NO can be derived from tissue nitrite reductase activity than from red blood cell nitrite reductase activity. Evidence in the literature suggests that tissue nitrite reductase activity is associated with xanthine oxidoreductase (XOR) and/or aldehyde oxidoreductase (AOR).
View Article and Find Full Text PDFInteractions between cardiac myoglobin (Mb), nitrite, and nitric oxide (NO) are vital in regulating O storage, transport, and NO homeostasis. Production of NO through the reduction of endogenous myocardial nitrite by deoxygenated myoglobin has been shown to significantly reduce myocardial infarction damage and ischemic injury. We developed a mathematical model for a cardiac arteriole and surrounding myocardium to examine the hypothesis that myoglobin switches functions from being a strong NO scavenger to an NO producer via the deoxymyoglobin nitrite reductase pathway.
View Article and Find Full Text PDFEndothelial dysfunction, characterized by decreased production or availability of nitric oxide (NO), is widely believed to be the hallmark of early-stage atherosclerosis. In addition, hypercholesterolemia is considered a major risk factor for development of atherosclerosis and is associated with impaired flow-induced dilation. However, the mechanism by which elevated cholesterol levels leads to decreased production of NO is unclear.
View Article and Find Full Text PDFNitrite infusion into the bloodstream has been shown to elicit vasodilation and protect against ischemia-reperfusion injury through nitric oxide (NO) release in hypoxic conditions. However, the mechanism by which nitrite-derived NO escapes scavenging by hemoglobin in the erythrocyte has not been fully elucidated, owing in part to the difficulty in measuring the reactions and transport on NO in vivo. We developed a mathematical model for an arteriole and surrounding tissue to examine the hypothesis that dinitrogen trioxide (NO) acts as a stable intermediate for preserving NO.
View Article and Find Full Text PDFWe developed a mass transport model for a parallel-plate flow chamber apparatus to predict the concentrations of nitric oxide (NO) and adenine nucleotides (ATP, ADP) produced by cultured endothelial cells (ECs) and investigated how the net rates of production, degradation, and mass transport for these three chemical species vary with changes in wall shear stress (τw). These simulations provide an improved understanding of experimental results obtained with parallel-plate flow chambers and allows quantitative analysis of the relationship between τw, adenine nucleotide concentrations, and NO produced by ECs. Experimental data obtained after altering ATP and ADP concentrations with apyrase were analyzed to quantify changes in the rate of NO production (RNO).
View Article and Find Full Text PDFFlow-induced production of nitric oxide (NO) by endothelial cells plays a fundamental role in vascular homeostasis. However, the mechanisms by which shear stress activates NO production remain unclear due in part to limitations in measuring NO, especially under flow conditions. Shear stress elicits the release of ATP, but the relative contribution of autocrine stimulation by ATP to flow-induced NO production has not been established.
View Article and Find Full Text PDFAims: We reported earlier that ischemia results in the generation of reactive oxygen species (ROS) via the closure of a K(ATP) channel which causes membrane depolarization and NADPH oxidase 2 (NOX2) activation. This study was undertaken to understand the role of ischemia-mediated ROS in signaling.
Results: Angiogenic potential of pulmonary microvascular endothelial cells (PMVEC) was studied in vitro and in the hind limb in vivo.
This investigation was to elucidate the basis for augmentation of nitric-oxide synthesis in neutrophils exposed to hyperbaric oxygen. Hyperoxia increases synthesis of reactive species leading to S-nitrosylation of β-actin, which causes temporary inhibition of β(2) integrin adherence. Impaired β(2) integrin function and actin S-nitrosylation do not occur in neutrophils from mice lacking type-2 nitric-oxide synthase (iNOS) or when incubated with 1400W, an iNOS inhibitor.
View Article and Find Full Text PDFInert gases diffuse into tissues in proportion to ambient pressure, and when pressure is reduced, gas efflux forms bubbles due to the presence of gas cavitation nuclei that are predicted based on theory but have never been characterized. Decompression stress triggers elevations in number and diameter of circulating annexin V-coated microparticles (MPs) derived from vascular cells. Here we show that ∼10% MPs from wild-type (WT) but not inflammatory nitric oxide synthase-2 (iNOS) knockout (KO) mice increase in size when exposed to elevated air pressure ex vivo.
View Article and Find Full Text PDFSeveral apparent paradoxes are evident when one compares mathematical predictions from models of nitric oxide (NO) diffusion and convection in vasculature structures with experimental measurements of NO (or related metabolites) in animal and human studies. Values for NO predicted from mathematical models are generally much lower than in vivo NO values reported in the literature for experiments, specifically with NO microelectrodes positioned at perivascular locations next to different sizes of blood vessels in the microcirculation and NO electrodes inserted into a wide range of tissues supplied by the microcirculation of each specific organ system under investigation. There continues to be uncertainty about the roles of NO scavenging by hemoglobin versus a storage function that may conserve NO, and other signaling targets for NO need to be considered.
View Article and Find Full Text PDFRecent evidence in the literature suggests that tissues play a greater role than blood in reducing nitrite to NO under ischemic or hypoxic conditions. Our previous mathematical model for coupled NO and O(2) transport around an arteriole, modified to include superoxide generation from dysfunctional endothelium, was developed further to include nitrite reductase activity in blood and tissue. Steady-state radial and axial NO and pO(2) profiles in the arteriole and surrounding tissue were simulated for different blood flow rates and arterial blood pO(2) values.
View Article and Find Full Text PDFWe developed a mathematical model to simulate shear stress-dependent nitric oxide (NO) production and transport in a 3D microcirculatory network based on published data. The model consists of a 100 μm × 500 μm × 75 μm rectangular volume of tissue containing two arteriole-branching trees, and nine capillaries surrounding the vessels. Computed distributions for NO in blood, vascular walls, and surrounding tissue were affected by hematocrit (Hct) and wall shear stress (WSS) in the network.
View Article and Find Full Text PDFNitric oxide (NO) produced by the endothelium is involved in the regulation of vascular tone. Decreased NO production or availability has been linked to endothelial dysfunction in hypercholesterolemia and hypertension. Shear stress-induced NO release is a well-established phenomenon, yet the cellular mechanisms of this response are not completely understood.
View Article and Find Full Text PDFAdv Exp Med Biol
March 2009
Computer simulations were performed based on a multiple chemical species convection-diffusion model with coupled biochemical reactions for oxygen (O2), nitric oxide (NO), superoxide (O2*-), peroxynitrite (ONOO-), nitrite (NO2-) and nitrate (NO3-) in cylindrical geometry with blood flow through a 30 microm diameter arteriole. Steady state concentration gradients of all chemical species were predicted for different O2*- production rates, superoxide dismutase (SOD) concentrations, and blood flow rates. Effects of additional O2*- production from dysfunctional endothelial nitric oxide synthase (eNOS) were also simulated.
View Article and Find Full Text PDFThis study investigates the role of tumor nitric oxide (NO) and vascular regulation in tumor ulceration following high-dose tumor necrosis factor-alpha (TNF) treatment. Using TNF-responsive (MethA) and nonresponsive (LL2) mouse tumors, tumor NO concentration was measured with an electrochemical sensor and tumor blood flow by Doppler ultrasound. Mice were also pretreated with a selective inducible nitric oxide synthase (iNOS) inhibitor, 1400 W.
View Article and Find Full Text PDFNitric oxide (NO) has been long assumed to play a key role in mammalian olfaction. This was based largely on circumstantial evidence, i.e.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2008
We developed a two-dimensional model of transport-dependent intracellular calcium signaling in endothelial cells (ECs). Our purpose was to evaluate the effects of spatial colocalization of endothelial nitric oxide synthase (eNOS) and capacitative calcium entry (CCE) channels in caveolae on eNOS activation in response to ATP. Caveolae are specialized microdomains of the plasma membrane that contain a variety of signaling molecules to optimize their interactions and regulate their activity.
View Article and Find Full Text PDFAdv Exp Med Biol
December 2007
Increasing efforts have been directed towards investigating the involvement of nitric oxide (NO) for normal kidney function. Recently, a crucial role of NO in the development of progressive renal dysfunction has been reported during diabetes and hypertension. Indirect estimation of renal NO production include urinary nitrite/nitrate measurements, but there are several disadvantages of indirect methods since production and bioavailability of NO rarely coincide.
View Article and Find Full Text PDFThe role of nitric oxide (NO) as a highly diffusible free radical gaseous vasodilator is intrinsically linked to the control of blood flow and oxygen (O(2)) delivery to tissue. NO also is involved in regulating mitochondrial O(2) metabolism, growth of new blood vessels, and blood oxygenation through control of respiratory ventilation. Hemoglobin and myoglobin may help to conserve NO for subsequent release of a NO-related vasoactive species under hypoxic conditions.
View Article and Find Full Text PDFEndothelial progenitor cells (EPCs) are essential in vasculogenesis and wound healing, but their circulating and wound level numbers are decreased in diabetes. This study aimed to determine mechanisms responsible for the diabetic defect in circulating and wound EPCs. Since mobilization of BM EPCs occurs via eNOS activation, we hypothesized that eNOS activation is impaired in diabetes, which results in reduced EPC mobilization.
View Article and Find Full Text PDF