Parkinson's disease pathogenesis proceeds through several phases, culminating in the loss of dopaminergic neurons of the substantia nigra (SN). Although the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of oxidative SN injury is frequently used to study degeneration of dopaminergic neurons in mice and non-human primates, an understanding of the temporal sequence of molecular events from inhibition of mitochondrial complex 1 to neuronal cell death is limited. Here, microarray analysis and integrative data mining were used to uncover pathways implicated in the progression of changes in dopaminergic neurons after MPTP administration.
View Article and Find Full Text PDFRecent advances in technologies for high-throughout single-nucleotide polymorphism (SNP)-based genotyping have improved efficiency and cost so that it is now becoming reasonable to consider the use of SNPs for genomewide linkage analysis. However, a suitable screening set of SNPs and a corresponding linkage map have yet to be described. The SNP maps described here fill this void and provide a resource for fast genome scanning for disease genes.
View Article and Find Full Text PDFAppl Immunohistochem Mol Morphol
September 2002
Formalin-fixed, paraffin-embedded tissue (PET) is an invaluable resource for retrospective molecular genetic studies, but the extraction of high-quality genomic DNA from the PET may be problematic. We report a simple method that significantly improves the ability to amplify DNA recovered from formalin-fixed PET. Based on the standard procedure of a commercially available DNA preparation kit, the QIAamp DNA mini kit or the HighPure DNA preparation kit, we developed this method by eliminating the xylene/ethanol extraction step and adding a heat-treatment step.
View Article and Find Full Text PDF