Niemann Pick type C1 (NPC1) is a rare, fatal disorder characterized by endosomal lipid accumulation that leads to damage of both peripheral organs and central nervous system (cerebellum and hippocampus are especially affected). Currently, miglustat is the only approved drug for NPC1, thus the identification of new treatments is mandatory. We have previously demonstrated that the drug dipyridamole (DIP), an enhancer of adenosine signaling, can reduce the pathological phenotype in patient-derived fibroblasts.
View Article and Find Full Text PDFThe U1 snRNP complex recognizes pre-mRNA splicing sites in the early stages of spliceosome assembly and suppresses premature cleavage and polyadenylation. Its dysfunction may precede Alzheimer's disease (AD) hallmarks. Here we evaluated the effects of a synthetic single-stranded cDNA (APT20TTMG) that interacts with U1 snRNP, in iPSC-derived neurons from a donor diagnosed with AD and in the SAMP8 mouse model.
View Article and Find Full Text PDFWhile preclinical studies assessing drugs for Alzheimer's disease (AD) are conducted in animal models that usually display only one neuropathological feature of AD, patients present with a complex combination of comorbidities and neuropathologies. Importantly, it is well-established that amyloid (Aβ) plaque and tau tangle accumulation interact in a phase-dependent manner, making it difficult to predict how targeting one might influence the other, as well as downstream degeneration. We developed a transgenic mouse model, APP/PS1xTau22, with progressive cortical Aβ deposition and hippocampal tau neurofibrillary inclusions to investigate how both neuropathologies act jointly to bring about neural degeneration, synapse loss, and glial phenotypes.
View Article and Find Full Text PDFBackground: Current AT(N) stratification for Alzheimer's disease (AD) accounts for complex combinations of amyloid (A), tau proteinopathy (T) and neurodegeneration (N) signatures. Understanding the transition between these different stages is a major challenge, especially in view of the recent development of disease modifying therapy.
Methods: This is an observational study, CSF levels of Tau, pTau181, pTau217, Aβ38/40/42, sAPPα/β, BACE1 and neurogranin were measured in the BALTAZAR cohort of cognitively impaired patients and in the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Microglial cells are the phagocytic cells of the brain that under physiological conditions participate in brain homeostasis and surveillance. Under pathogenic states, microglia undergoes strong morphological and transcriptional changes potentially leading to sustained neuroinflammation, brain damage, and cognitive disorders. Postnatal and adult Zika virus (ZIKV) brain infection is characterized by the induction of reactive microglia associated with brain inflammation, synapse loss and neuropathogenesis.
View Article and Find Full Text PDFBackground: The burgeoning field of regenerative medicine has significantly advanced with recent findings on biotherapies using human platelet lysates (HPLs), derived from clinical-grade platelet concentrates (PCs), for treating brain disorders. These developments have opened new translational research avenues to explore the neuroprotective effects of platelet-extracellular vesicles (PEVs). Their potential in managing neurodegenerative conditions like traumatic brain injury (TBI) and Parkinson's disease (PD) warrants further exploration.
View Article and Find Full Text PDFSelective degradation of pathological protein aggregates while sparing monomeric forms is of major therapeutic interest. The E3 ligase tripartite motif-containing protein 21 (TRIM21) degrades antibody-bound proteins in an assembly state-specific manner due to the requirement of TRIM21 RING domain clustering for activation, yet effective targeting of intracellular assemblies remains challenging. Here, we fused the RING domain of TRIM21 to a target-specific nanobody to create intracellularly expressed constructs capable of selectively degrading assembled proteins.
View Article and Find Full Text PDFIntroduction: We investigated the link between habitual caffeine intake with memory impairments and cerebrospinal fluid (CSF) biomarkers in mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients.
Methods: MCI (N = 147) and AD (N = 116) patients of the Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk (BALTAZAR) cohort reported their caffeine intake at inclusion using a dedicated survey. Associations of caffeine consumption with memory impairments and CSF biomarkers (tau, p-tau181, amyloid beta 1-42 [Aβ], Aβ) were analyzed using logistic and analysis of covariance models.
Caffeine consumption outcomes on Amyotrophic Lateral Sclerosis (ALS) including progression, survival and cognition remain poorly defined and may depend on its metabolization influenced by genetic variants. 378 ALS patients with a precise evaluation of their regular caffeine consumption were monitored as part of a prospective multicenter study. Demographic, clinical characteristics, functional disability as measured with revised ALS Functional Rating Scale (ALSFRS-R), cognitive deficits measured using Edinburgh Cognitive and Behavioural ALS Screen (ECAS), survival and riluzole treatment were recorded.
View Article and Find Full Text PDFEarly pathological upregulation of adenosine A2A receptors (A2ARs), one of the caffeine targets, by neurons is thought to be involved in the development of synaptic and memory deficits in Alzheimer's disease (AD) but mechanisms remain ill-defined. To tackle this question, we promoted a neuronal upregulation of A2AR in the hippocampus of APP/PS1 mice developing AD-like amyloidogenesis. Our findings revealed that the early upregulation of A2AR in the presence of an ongoing amyloid pathology exacerbates memory impairments of APP/PS1 mice.
View Article and Find Full Text PDFMitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aβ) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before.
View Article and Find Full Text PDFAging is the main risk factor of cognitive neurodegenerative diseases such as Alzheimer's disease, with epigenome alterations as a contributing factor. Here, we compared transcriptomic/epigenomic changes in the hippocampus, modified by aging and by tauopathy, an AD-related feature. We show that the cholesterol biosynthesis pathway is severely impaired in hippocampal neurons of tauopathic but not of aged mice pointing to vulnerability of these neurons in the disease.
View Article and Find Full Text PDFHuman platelet lysates (HPLs) from allogeneic platelet concentrates (PCs) are biomaterials, which are rich in various trophic factors, increasingly used in regenerative medicine and biotherapy. Understanding how preparation methods influence the HPL protein profile, biological function, and clinical outcomes is crucial. Our study sheds light on the proteomes and functionality of different HPLs, with the aim of advancing their scientifically grounded clinical applications.
View Article and Find Full Text PDFJ Neurol Neurosurg Psychiatry
October 2024
Background: Among plasma biomarkers for Alzheimer's disease (AD), pTau181 and pTau217 are the most promising. However, transition from research to routine clinical use will require confirmation of clinical performance in prospective cohorts and evaluation of cofounding factors.
Method: pTau181 and pTau217 were quantified using, Quanterix and ALZpath, SIMOA assays in the well-characterised prospective multicentre BALTAZAR (Biomarker of AmyLoid pepTide and AlZheimer's diseAse Risk) cohort of participants with mild cognitive impairment (MCI).
While the double helical structure has long been its iconic representation, DNA is structurally dynamic and can adopt alternative secondary configurations. Specifically, guanine-rich DNA sequences can fold in guanine quadruplexes (G4) structures. These G4 play pivotal roles as regulators of gene expression and genomic stability, and influence protein homeostasis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2024
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils.
View Article and Find Full Text PDFThe use of variable domain of the heavy-chain of the heavy-chain-only antibodies (VHHs) as disease-modifying biomolecules in neurodegenerative disorders holds promises, including targeting of aggregation-sensitive proteins. Exploitation of their clinical values depends however on the capacity to deliver VHHs with optimal physico-chemical properties for their specific context of use. We described previously a VHH with high therapeutic potential in a family of neurodegenerative diseases called tauopathies.
View Article and Find Full Text PDFAlzheimer's disease (AD) progression and pathology show pronounced sex differences, but the factors driving these remain poorly understood. To gain insights into early AD-associated molecular changes and their sex dependency for tau pathology in the cortex, we performed single-cell RNA-seq in the THY-Tau22 AD mouse model. By examining cell type-specific and cell type-agnostic AD-related gene activity changes and their sex-dimorphism for individual genes, pathways and cellular sub-networks, we identified both statistically significant alterations and interpreted the upstream mechanisms controlling them.
View Article and Find Full Text PDFBackground And Purpose: Blood-based biomarkers are a non-invasive solution to predict the risk of conversion of mild cognitive impairment (MCI) to dementia. The utility of free plasma amyloid peptides (not bound to plasma proteins and/or cells) as an early indicator of conversion to dementia is still debated, as the results of studies have been contradictory. In this context, we investigated whether plasma levels of the free amyloid peptides Aβ and Aβ and the free plasma Aβ/Aβ ratio are associated with the conversion of MCI to dementia, in particular AD, over three years of follow-up in a subgroup of the BALTAZAR cohort.
View Article and Find Full Text PDFIntroduction: The pace of innovation has accelerated in virtually every area of tau research in just the past few years.
Methods: In February 2022, leading international tau experts convened to share selected highlights of this work during Tau 2022, the second international tau conference co-organized and co-sponsored by the Alzheimer's Association, CurePSP, and the Rainwater Charitable Foundation.
Results: Representing academia, industry, and the philanthropic sector, presenters joined more than 1700 registered attendees from 59 countries, spanning six continents, to share recent advances and exciting new directions in tau research.
Alzheimer's disease is characterized by the accumulation of amyloid-β plaques, aggregation of hyperphosphorylated tau (pTau), and microglia activation. Galectin-3 (Gal3) is a β-galactoside-binding protein that has been implicated in amyloid pathology. Its role in tauopathy remains enigmatic.
View Article and Find Full Text PDFEarly-life exposure to high-fat diets (HF) can program metabolic and cognitive alterations in adult offspring. Although the hippocampus plays a crucial role in memory and metabolic homeostasis, few studies have reported the impact of maternal HF on this structure. We assessed the effects of maternal HF during lactation on physiological, metabolic, and cognitive parameters in young adult offspring mice.
View Article and Find Full Text PDF