Publications by authors named "Budzevich M"

The extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH using pH-sensitive contrast agents.

View Article and Find Full Text PDF

For multicenter clinical studies, characterizing the robustness of image-derived radiomics features is essential. Features calculated on PET images have been shown to be very sensitive to image noise. The purpose of this work was to investigate the efficacy of a relatively simple harmonization strategy on feature robustness and agreement.

View Article and Find Full Text PDF

Microvascular disease is frequently found in major pathologies affecting vital organs, such as the brain, heart, and kidneys. While imaging modalities, such as ultrasound, computed tomography, single photon emission computed tomography, and magnetic resonance imaging, are widely used to visualize vascular abnormalities, the ability to non-invasively assess an organ's total vasculature, including microvasculature, is often limited or cumbersome. Previously, we have demonstrated proof of concept that non-invasive imaging of the total mouse vasculature can be achieved with 18F-fluorodeoxyglucose (18F-FDG)-labeled human erythrocytes and positron emission tomography/computerized tomography (PET/CT).

View Article and Find Full Text PDF

Lipophilicity is explored in the biodistribution (BD), pharmacokinetics (PK), radiation dosimetry (RD), and toxicity of an internally administered targeted alpha-particle therapy (TAT) under development for the treatment of metastatic melanoma. The TAT conjugate is comprised of the chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate), conjugated to melanocortin receptor 1 specific peptidic ligand (MC1RL) using a linker moiety and chelation of the Ac radiometal. A set of conjugates were prepared with a range of lipophilicities (log values) by varying the chemical properties of the linker.

View Article and Find Full Text PDF
Article Synopsis
  • Hypoxic regions within tumors are resistant to many therapies, leading to the development of hypoxia-activated prodrugs (HAPs) like evofosfamide (TH-302) to specifically target these areas.
  • A phase III trial showed no survival benefit for TH-302 combined with doxorubicin in soft tissue sarcomas, possibly due to not identifying patient hypoxia status beforehand.
  • Researchers used deep-learning models and MRI to detect hypoxia in mouse models, finding that while TH-302 improved survival in certain models, resistance developed over time, highlighting the potential of AI in predicting treatment responses and adjusting therapy accordingly.
View Article and Find Full Text PDF

Purpose: There is significant interest in the development of targeted alpha-particle therapies (TATs) for treatment of solid tumors. The metal chelator-peptide conjugate, DOTA-TATE, loaded with the β-particle emitting radionuclide Lu ([Lu]Lu-DOTA-TATE) is now standard care for neuroendocrine tumors that express the somatostatin receptor 2 (SSTR2) target. A recent clinical study demonstrated efficacy of the corresponding [Ac]Ac-DOTA-TATE in patients that were refractory to [Lu]Lu-DOTA-TATE.

View Article and Find Full Text PDF

Targeted α particle therapy (TAT) is ideal for treating disease while minimizing damage to surrounding nontargeted tissues due to short path length and high linear energy transfer (LET). We developed a TAT for metastatic uveal melanoma, targeting the melanocortin-1 receptor (MC1R), which is expressed in 94% of uveal melanomas. Two versions of the therapy are being investigated: Ac-DOTA-Ahx-MC1RL (Ac-Ahx) and Ac-DOTA-di-d-Glu-MC1RL (Ac-di-d-Glu).

View Article and Find Full Text PDF

Quantitative imaging biomarkers (QIBs) provide medical image-derived intensity, texture, shape, and size features that may help characterize cancerous tumors and predict clinical outcomes. Successful clinical translation of QIBs depends on the robustness of their measurements. Biomarkers derived from positron emission tomography images are prone to measurement errors owing to differences in image processing factors such as the tumor segmentation method used to define volumes of interest over which to calculate QIBs.

View Article and Find Full Text PDF

Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of alpha (α) particles in tissue, cancer cells can be significantly damaged while causing minimal toxicity to surrounding healthy cells. Recent clinical studies have demonstrated the remarkable efficacy of TAT in the treatment of metastatic, castration-resistant prostate cancer.

View Article and Find Full Text PDF

Using targeted ligands to deliver alpha-emitting radionuclides directly to tumor cells has become a promising therapeutic strategy. To calculate the radiation dose to patients, activities of parent and daughter radionuclides must be measured. Scintillation detectors can be used to quantify these activities; however, activities found in pre-clinical and clinical studies can exceed their optimal performance range.

View Article and Find Full Text PDF

It is well-recognized that solid tumors are genomically, anatomically, and physiologically heterogeneous. In general, more heterogeneous tumors have poorer outcomes, likely due to the increased probability of harboring therapy-resistant cells and regions. It is hypothesized that the genomic and physiologic heterogeneity are related, because physiologically distinct regions will exert variable selection pressures leading to the outgrowth of clones with variable genomic/proteomic profiles.

View Article and Find Full Text PDF

Inner ear disorders such as sensorineural deafness and genetic diseases may one day be treated with local drug delivery to the inner ear. Current pharmacokinetic models have been based on invasive methods to measure drug concentrations, limiting them in spatial resolution, and restricting the research to larger rodents. We developed an intracochlear pharmacokinetic model based on an imaging, learning-prediction (LP) paradigm for learning transport parameters in the murine cochlea.

View Article and Find Full Text PDF

New effective therapies are greatly needed for metastatic uveal melanoma, which has a very poor prognosis with a median survival of less than 1 y. The melanocortin 1 receptor (MC1R) is expressed in 94% of uveal melanoma metastases, and a MC1R-specific ligand (MC1RL) with high affinity and selectivity for MC1R was previously developed. The Ac-DOTA-MC1RL conjugate was synthesized in high radiochemical yield and purity and was tested in vitro for biostability and for MC1R-specific cytotoxicity in uveal melanoma cells, and the lanthanum-DOTA-MC1RL analog was tested for binding affinity.

View Article and Find Full Text PDF

99m-Technetium-labeled (99mTc) erythrocyte imaging with planar scintigraphy is widely used for evaluating both patients with occult gastrointestinal bleeding and patients at risk for chemotherapy-induced cardiotoxicity. While a number of alternative radionuclide-based blood pool imaging agents have been proposed, none have yet to achieve widespread clinical use. Here, we present both in vitro and small animal in vivo imaging evidence that the high physiological expression of the glucose transporter GLUT1 on human erythrocytes allows uptake of the widely available radiotracer 2-deoxy-2-(18F)fluoro-D-glucose (FDG), at a rate and magnitude sufficient for clinical blood pool positron emission tomographic (PET) imaging.

View Article and Find Full Text PDF

The successful delivery of toxic cargo directly to tumor cells is of primary importance in targeted (α) particle therapy. Complexes of radioactive atoms with the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelating agent are considered as effective materials for such delivery processes. The DOTA chelator displays high affinity to radioactive metal isotopes and retains this capability after conjugation to tumor targeting moieties.

View Article and Find Full Text PDF

The field of hearing and deafness research is about to enter an era where new cochlear drug delivery methodologies will become more innovative and plentiful. The present report provides a representative review of previous studies where efficacious results have been obtained with animal models, primarily rodents, for protection against acute hearing loss such as acoustic trauma due to noise overexposure, antibiotic use and cancer chemotherapies. These approaches were initiated using systemic injections or oral administrations of otoprotectants.

View Article and Find Full Text PDF

Positron emission tomography (PET) is a quantitative imaging modality, but the computation of standardized uptake values (SUVs) requires several instruments to be correctly calibrated. Variability in the calibration process may lead to unreliable quantitation. Sealed source kits containing traceable amounts of [Formula: see text] were used to measure signal stability for 19 PET scanners at nine hospitals in the National Cancer Institute's Quantitative Imaging Network.

View Article and Find Full Text PDF

Parathyroid hormone-related protein (PTHrP) is a critical regulator of bone resorption and augments osteolysis in skeletal malignancies. Here we report that the mature PTHrP hormone is processed by matrix metalloproteinases to yield a stable product, PTHrP. PTHrP retains the ability to signal through PTH1R to induce calcium flux and ERK phosphorylation but not cyclic AMP production or CREB phosphorylation.

View Article and Find Full Text PDF

Purpose: Radiomics utilizes a large number of image-derived features for quantifying tumor characteristics that can in turn be correlated with response and prognosis. Unfortunately, extraction and analysis of such image-based features is subject to measurement variability and bias. The challenge for radiomics is particularly acute in Positron Emission Tomography (PET) where limited resolution, a high noise component related to the limited stochastic nature of the raw data, and the wide variety of reconstruction options confound quantitative feature metrics.

View Article and Find Full Text PDF

IDO1 is an enzyme catalyzing the initial and rate-limiting step in the catabolism of tryptophan along the kynurenine pathway. IDO1 expression could suppress immune responses by blocking T-lymphocyte proliferation locally, suggesting a role of IDO in the regulation of immune responses. The goal of this study was to evaluate the potential of radiofluorinated carboximidamides as selective PET radioligands for IDO1.

View Article and Find Full Text PDF

The effect of noise on image features has yet to be studied in depth. Our objective was to explore how significantly image features are affected by the addition of uncorrelated noise to an image. The signal-to-noise ratio and noise power spectrum were calculated for a positron emission tomography/computed tomography scanner using a Ge-68 phantom.

View Article and Find Full Text PDF

RET fusions have been found in lung adenocarcinoma, of which KIF5B-RET is the most prevalent. We established inducible KIF5B-RET transgenic mice and KIF5B-RET-dependent cell lines for preclinical modeling of KIF5B-RET-associated lung adenocarcinoma. Doxycycline-induced CCSP-rtTA/tetO-KIF5B-RET transgenic mice developed invasive lung adenocarcinoma with desmoplastic reaction.

View Article and Find Full Text PDF

The ability to rapidly assess the efficacy of therapeutic strategies for incurable bone metastatic prostate cancer is an urgent need. Pre-clinical in vivo models are limited in their ability to define the temporal effects of therapies on simultaneous multicellular interactions in the cancer-bone microenvironment. Integrating biological and computational modeling approaches can overcome this limitation.

View Article and Find Full Text PDF

The theranostic potential of (225)Ac-based radiopharmaceuticals continues to increase as researchers seek innovative ways to harness the nuclear decay of this radioisotope for therapeutic and imaging applications. This communication describes the evaluation of (225)Ac-DOTA-c(RGDyK) in both biodistribution and Cerenkov luminescence imaging (CLI) studies. Initially, La-DOTA-c(RGDyK) was prepared as a non-radioactive surrogate to evaluate methodologies that would contribute to an optimized radiochemical synthetic strategy and estimate the radioactive conjugate's affinity for αvβ3, using surface plasmon resonance spectroscopy.

View Article and Find Full Text PDF