Publications by authors named "Budnik B"

Diverse subtypes of cortical projection neurons (PN) form long-range axonal projections that are responsible for distinct sensory, motor, cognitive, and behavioral functions. Translational control has been identified at multiple stages of PN development, but how translational regulation contributes to formation of distinct, subtype-specific long-range circuits is poorly understood. Ribosomal complexes (RCs) exhibit variations of their component proteins, with an increasing set of examples that confer specialized translational control.

View Article and Find Full Text PDF
Article Synopsis
  • The Human Proteome Project (HPP) aims to identify every protein-coding gene’s isoform and integrate proteomics into studies of human health and disease.
  • Major updates include the retirement of neXtProt as the knowledge base, with UniProtKB now serving as the reference proteome, and GENCODE providing the target protein list.
  • Recent data shows that 93% of protein-coding genes have been expressed, leaving 1,273 non-expressed proteins, along with the introduction of a new scoring system for functional annotation of proteins.
View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have developed a new gene expression vector, CPP16, which effectively delivered the human gene responsible for MLIV in preclinical mouse models.
  • * The treatment improved brain function and motor skills, preventing paralysis, although it did not restore retinal thickness despite some positive effects on retinal tissue degeneration.
View Article and Find Full Text PDF

Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored.

View Article and Find Full Text PDF

With advances in sample preparation, small-volume liquid dispensing technologies, high-resolution MS/MS instrumentation, and data acquisition methodologies, it has become increasingly possible to confidently investigate the heterogeneous proteome found within individual cells. In this chapter, we present an automated high-throughput sample preparation workflow based on the Tecan Uno instrument for quantitative single-cell mass spectrometry-based proteomics. Cells are analyzed by the Single-Cell Proteome Analysis platform (SCREEN), which was introduced earlier and provides deeper proteome coverage across single cells.

View Article and Find Full Text PDF

This study conducted a comparative proteomic analysis to identify potential genetic markers for the biological function of chemolithoautotrophic iron oxidation in the marine bacterium Ghiorsea bivora. To date, this is the only characterized species in the class Zetaproteobacteria that is not an obligate iron-oxidizer, providing a unique opportunity to investigate differential protein expression to identify key genes involved in iron-oxidation at circumneutral pH. Over 1000 proteins were identified under both iron- and hydrogen-oxidizing conditions, with differentially expressed proteins found in both treatments.

View Article and Find Full Text PDF

Modulation of the cervix by steroid hormones and commensal microbiome play a central role in the health of the female reproductive tract. Here we describe organ-on-a-chip (Organ Chip) models that recreate the human cervical epithelial-stromal interface with a functional epithelial barrier and production of mucus with biochemical and hormone-responsive properties similar to living cervix. When Cervix Chips are populated with optimal healthy versus dysbiotic microbial communities (dominated by Lactobacillus crispatus and Gardnerella vaginalis, respectively), significant differences in tissue innate immune responses, barrier function, cell viability, proteome, and mucus composition are observed that are similar to those seen in vivo.

View Article and Find Full Text PDF

Specific and highly diverse connectivity between functionally specialized regions of the nervous system is controlled at multiple scales, from anatomically organized connectivity following macroscopic axon tracts to individual axon target-finding and synapse formation. Identifying mechanisms that enable entire subpopulations of related neurons to project their axons with regional specificity within stereotyped tracts to form appropriate long-range connectivity is key to understanding brain development, organization, and function. Here, we investigate how axons of the cerebral cortex form precise connections between the two cortical hemispheres via the corpus callosum.

View Article and Find Full Text PDF

Single-cell analysis has clearly established itself in biology and biomedical fields as an invaluable tool that allows one to comprehensively understand the relationship between cells, including their types, states, transitions, trajectories, and spatial position. Scientific methods such as fluorescence labeling, nanoscale super-resolution microscopy, advances in single cell RNAseq and proteomics technologies, provide more detailed information about biological processes which were not evident with the analysis of bulk material. This new era of single-cell biology provides a better understanding of such complex biological systems as cancer, inflammation, immunity mechanism and aging processes, and opens the door into the field of drug response heterogeneity.

View Article and Find Full Text PDF

Mucolipidosis IV (MLIV) is an ultra-rare, recessively inherited lysosomal disorder resulting from inactivating mutations in , the gene encoding the lysosomal cation channel TRPML1. The disease primarily affects the central nervous system (CNS) and manifests in the first year with cognitive and motor developmental delay, followed by a gradual decline in neurological function across the second decade of life, blindness, and premature death in third or fourth decades. Brain pathology manifestations in MLIV are consistent with hypomyelinating leukodystrophy with brain iron accumulation.

View Article and Find Full Text PDF

Single-cell methodologies and technologies have started a revolution in biology which until recently has primarily been limited to deep sequencing and imaging modalities. With the advent and subsequent torrid development of single-cell proteomics over the last 5 years, despite the fact that proteins cannot be amplified like transcripts, it has now become abundantly clear that it is a worthy complement to single-cell transcriptomics. In this review, we engage in an assessment of the current state of the art of single-cell proteomics including workflow, sample preparation techniques, instrumentation, and biological applications.

View Article and Find Full Text PDF

Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are released by all cells into biofluids such as plasma. The separation of EVs from highly abundant free proteins and similarly sized lipoproteins remains technically challenging. We developed a digital ELISA assay based on Single Molecule Array (Simoa) technology for ApoB-100, the protein component of several lipoproteins.

View Article and Find Full Text PDF

Stem cell differentiation is a highly dynamic process involving pervasive changes in gene expression. The large majority of existing studies has characterized differentiation at the level of individual molecular profiles, such as the transcriptome or the proteome. To obtain a more comprehensive view, we measured protein, mRNA and microRNA abundance during retinoic acid-driven differentiation of mouse embryonic stem cells.

View Article and Find Full Text PDF

Engineering the genetic code of an organism has been proposed to provide a firewall from natural ecosystems by preventing viral infections and gene transfer. However, numerous viruses and mobile genetic elements encode parts of the translational apparatus, potentially rendering a genetic-code-based firewall ineffective. Here we show that such mobile transfer RNAs (tRNAs) enable gene transfer and allow viral replication in Escherichia coli despite the genome-wide removal of 3 of the 64 codons and the previously essential cognate tRNA and release factor genes.

View Article and Find Full Text PDF

Non-native conformations drive protein misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well-suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins.

View Article and Find Full Text PDF

As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system.

View Article and Find Full Text PDF

Tissue-specific stem cells persist for a lifetime and can differentiate to maintain homeostasis or transform to initiate cancer. Despite their importance, there are no described quality assurance mechanisms for newly formed stem cells. We observed intimate and specific interactions between macrophages and nascent blood stem cells in zebrafish embryos.

View Article and Find Full Text PDF

Ratiometric delivery of combination chemotherapy can achieve therapeutic efficacy based on synergistic interactions between drugs. It is critical to design such combinations with drugs that complement each other and reduce cancer growth through multiple mechanisms. Using hyaluronic acid (HA) as a carrier, two chemotherapeutic agents-doxorubicin (DOX) and camptothecin (CPT)-were incorporated and tested for their synergistic potency against a broad panel of blood-cancer cell lines.

View Article and Find Full Text PDF

Pluripotent stem cells (PSC) endocrine differentiation at a large scale allows sampling of transcriptome and proteome with phosphoproteome (proteoform) at specific time points. We describe the dynamic time course of changes in cells undergoing directed beta-cell differentiation and show target proteins or previously unknown phosphorylation of critical proteins in pancreas development, NKX6-1, and Chromogranin A (CHGA). We describe fluctuations in the correlation between gene expression, protein abundance, and phosphorylation, following differentiation protocol perturbations at all stages to identify proteoform profiles.

View Article and Find Full Text PDF

The thalidomide analogue lenalidomide (Len) is a clinical therapeutic that alters the substrate engagement of cereblon (CRBN), a substrate receptor for the CRL4 E3 ubiquitin ligase. Here, we report the development of photolenalidomide (pLen), a Len probe with a photoaffinity label and enrichment handle, designed for target identification by chemical proteomics. pLen preserves the substrate degradation profile, phenotypic antiproliferative and immunomodulatory properties of Len, and enhances interactions with the thalidomide-binding domain of CRBN, as revealed by binding site mapping and molecular modeling.

View Article and Find Full Text PDF

Iron is essential for erythropoiesis and other biological processes, but is toxic in excess. Dietary absorption of iron is a highly regulated process and is a major determinant of body iron levels. Iron excretion, however, is considered a passive, unregulated process, and the underlying pathways are unknown.

View Article and Find Full Text PDF

The molecular characterization of extracellular vesicles (EVs) has revealed a great heterogeneity in their composition at a cellular and tissue level. Current isolation methods fail to efficiently separate EV subtypes for proteomic and functional analysis. The aim of this study was to develop a reproducible and scalable isolation workflow to increase the yield and purity of EV preparations.

View Article and Find Full Text PDF
Article Synopsis
  • Cohesin is a protein complex important for 3D genome organization, sister chromatid cohesion, and DNA repair but its ubiquitination mechanisms are not well understood.
  • Researchers used gene editing to tag cohesin components in human cells and identified the USP13 deubiquitinase as a key interacting protein with cohesin.
  • USP13 is essential for regulating cohesin's ubiquitination and its interaction with chromatin during cell division, though it does not affect sister chromatid cohesion directly.
View Article and Find Full Text PDF

The protozoan parasite (TV), exclusively adapted to the human genital tract, is one of the most common sexually transmitted pathogens. Adding to the complexity of the host-pathogen interactions, the parasite harbors TV-specific endosymbiont viruses (, TVV). It was reported that small extracellular vesicles (sEVs) released by TV play a role in host immunity; however, the role of the viral endosymbiosis in this process remained unknown.

View Article and Find Full Text PDF