Publications by authors named "Budinger G"

Metformin is among the most prescribed antidiabetic drugs, but the primary molecular mechanism by which metformin lowers blood glucose levels is unknown. Previous studies have proposed numerous mechanisms by which acute metformin lowers blood glucose, including the inhibition of mitochondrial complex I of the electron transport chain (ETC). Here, we used transgenic mice that globally express the internal alternative NADH dehydrogenase (NDI1) protein to determine whether the glucose-lowering effect of acute oral administration of metformin requires inhibition of mitochondrial complex I of the ETC in vivo.

View Article and Find Full Text PDF

A major limitation of immunotherapy is the development of resistance resulting from cancer-mediated inhibition of host lymphocytes. Cancer cells release CCL2 to recruit classical monocytes expressing its receptor CCR2 for the promotion of metastasis and resistance to immunosurveillance. In the circulation, some CCR2-expressing classical monocytes lose CCR2 and differentiate into intravascular nonclassical monocytes that have anticancer properties but are unable to access extravascular tumor sites.

View Article and Find Full Text PDF

Monocyte-derived alveolar macrophages drive lung injury and fibrosis in murine models and are associated with pulmonary fibrosis in humans. Monocyte-derived alveolar macrophages have been suggested to develop a phenotype that promotes lung repair as injury resolves. We compared single-cell and cytokine profiling of the alveolar space in a cohort of 35 patients with post-acute sequelae of COVID-19 who had persistent respiratory symptoms and abnormalities on a computed tomography scan of the chest that subsequently improved or progressed.

View Article and Find Full Text PDF

Background: Lung transplantation represents a pivotal intervention for individuals grappling with end-stage lung diseases, and the role of lung transplantation in acute respiratory distress syndrome (ARDS) patients has garnered increased attention especially after the coronavirus disease 2019 (COVID-19) pandemic. Multiple studies have demonstrated a high incidence of primary graft dysfunction (PGD) in patients with ARDS compared to contemporaneous controls undergoing transplantation for chronic end-stage lung diseases although underlying mechanisms or risk factors remain unknown. This retrospective study investigates the contrasting risk factors for PGD grade 3 in patients with ARDS and chronic respiratory failure undergoing lung transplantation.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on the impact of an evidence-based sedation bundle for ICU patients requiring mechanical ventilation during the early phase of the COVID-19 pandemic, addressing the challenges posed by increased patient volumes.
  • - Researchers implemented the sedation bundle using structured training and feedback, aiming to encourage goal-directed sedation to prevent excessive use of sedatives among critically ill COVID-19 patients.
  • - A comparison of sedative use and clinical outcomes was made between patients admitted before and after the bundle implementation, revealing increased use of benzodiazepines and changes in patient care metrics.
View Article and Find Full Text PDF

Background: Veno-venous extracorporeal membrane oxygenation (VV-ECMO) therapy is being increasingly used as respiratory support for patients with severe coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome (ARDS). However, the long-term outcome of VV-ECMO as a bridge to lung transplantation in COVID-19-associated ARDS remains unclear, hence the purpose of this study aimed to evaluate its long-term outcome, safety, and feasibility.

Methods: This was a retrospective cohort study from an institutional lung transplantation database between June 2020 and June 2022.

View Article and Find Full Text PDF

The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality.

View Article and Find Full Text PDF

Microglia are necessary for central nervous system (CNS) function during development and play roles in ageing, Alzheimer's disease and the response to demyelinating injury. The mitochondrial respiratory chain (RC) is necessary for conventional T cell proliferation and macrophage-dependent immune responses. However, whether mitochondrial RC is essential for microglia proliferation or function is not known.

View Article and Find Full Text PDF

Introduction: Cytomegalovirus (CMV) infection is associated with a poor prognosis after lung transplantation, and donor and recipient CMV serostatus is a risk factor for reactivation. CMV prophylaxis is commonly administered in the first year following transplantation to reduce CMV infection; however, the risk factors for long-term reactivation remain unclear. We investigated the timing and risk factors of CMV infection after prophylactic administration.

View Article and Find Full Text PDF

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice.

View Article and Find Full Text PDF

Type I interferons (IFNs) are critical for the antiviral immune response, and fine-tuning type I IFN production is critical to effectively clearing viruses without causing harmful immunopathology. We showed that the transcription factor Miz1 epigenetically repressed the expression of genes encoding type I IFNs in mouse lung epithelial cells by recruiting histone deacetylase 1 (HDAC1) to the promoters of and . Loss of function of Miz1 resulted in augmented production of these type I IFNs during influenza A virus (IAV) infection, leading to improved viral clearance in vitro and in vivo.

View Article and Find Full Text PDF

BACKGROUNDSurvivors of pneumonia, including SARS-CoV-2 pneumonia, are at increased risk for cognitive dysfunction and dementia. In rodent models, cognitive dysfunction following pneumonia has been linked to the systemic release of lung-derived pro-inflammatory cytokines. Microglia are poised to respond to inflammatory signals from the circulation, and their dysfunction has been linked to cognitive impairment in murine models of dementia and in humans.

View Article and Find Full Text PDF

Hypercapnia, elevation of the partial pressure of CO2 in blood and tissues, is a risk factor for mortality in patients with severe acute and chronic lung diseases. We previously showed that hypercapnia inhibits multiple macrophage and neutrophil antimicrobial functions and that elevated CO2 increases the mortality of bacterial and viral pneumonia in mice. Here, we show that normoxic hypercapnia downregulates innate immune and antiviral gene programs in alveolar macrophages (AMØs).

View Article and Find Full Text PDF

Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied.

View Article and Find Full Text PDF
Article Synopsis
  • Patients with chronic lung disease, obesity, and other co-existing health issues are at higher risk for severe COVID-19 illness, with hypercapnia (elevated CO levels) linked to increased viral replication and mortality.
  • The study found that hypercapnia boosts ACE2 expression and enhances the entry of SARS-CoV-2 pseudovirus into airway epithelial cells, particularly involving increased cholesterol levels in those cells.
  • Factors like cigarette smoke also raise ACE2 and SARS-CoV-2 entry, suggesting that hypercapnia and smoking jointly worsen COVID-19 outcomes, while cholesterol synthesis inhibitors may counter these effects.
View Article and Find Full Text PDF

Advancing age is the most important risk factor for the development of and mortality from acute and chronic lung diseases, including pneumonia, chronic obstructive pulmonary disease, and pulmonary fibrosis. This risk was manifest during the COVID-19 pandemic, when elderly people were disproportionately affected and died from SARS-CoV-2 pneumonia. However, the recent pandemic also provided lessons on lung resilience.

View Article and Find Full Text PDF

Astrocytes contribute to brain inflammation in neurological disorders but the molecular mechanisms controlling astrocyte reactivity and their relationship to neuroinflammatory endpoints are complex and poorly understood. In this study, we assessed the role of the calcium channel, Orai1, for astrocyte reactivity and inflammation-evoked depression behaviors in mice. Transcriptomics and metabolomics analysis indicated that deletion of Orai1 in astrocytes downregulates genes in inflammation and immunity, metabolism, and cell cycle pathways, and reduces cellular metabolites and ATP production.

View Article and Find Full Text PDF

We have developed a machine learning (ML) approach using Gaussian process (GP)-based spatial covariance (SCV) to track the impact of spatial-temporal mutational events driving host-pathogen balance in biology. We show how SCV can be applied to understanding the response of evolving covariant relationships linking the variant pattern of virus spread to pathology for the entire SARS-CoV-2 genome on a daily basis. We show that GP-based SCV relationships in conjunction with genome-wide co-occurrence analysis provides an early warning anomaly detection (EWAD) system for the emergence of variants of concern (VOCs).

View Article and Find Full Text PDF

Background: Primary graft dysfunction (PGD) and acute kidney injury (AKI) are major early complications of lung transplantation and are associated with increased mortality. Lung injury after PGD can contribute to renal dysfunction; however, the association between PGD and AKI severity has not been thoroughly investigated. We analyzed the association between PGD grading and AKI staging, and the impact of AKI on subsequent changes to chronic kidney disease (CKD), including glomerular filtration rate (GFR), over time.

View Article and Find Full Text PDF

Alveolar epithelial type 1 (AT1) cells are necessary to transfer oxygen and carbon dioxide between the blood and air. Alveolar epithelial type 2 (AT2) cells serve as a partially committed stem cell population, producing AT1 cells during postnatal alveolar development and repair after influenza A and SARS-CoV-2 pneumonia. Little is known about the metabolic regulation of the fate of lung epithelial cells.

View Article and Find Full Text PDF

Neurological impairment is the most common finding in patients with post-acute sequelae of COVID-19. Furthermore, survivors of pneumonia from any cause have an elevated risk of dementia. Dysfunction in microglia, the primary immune cell in the brain, has been linked to cognitive impairment in murine models of dementia and in humans.

View Article and Find Full Text PDF

Monocytes are abundant immune cells that infiltrate inflamed organs. However, the majority of monocyte studies focus on circulating cells, rather than those in tissue. Here, we identify and characterize an intravascular synovial monocyte population resembling circulating non-classical monocytes and an extravascular tissue-resident monocyte-lineage cell (TR-MC) population distinct in surface marker and transcriptional profile from circulating monocytes, dendritic cells, and tissue macrophages that are conserved in rheumatoid arthritis (RA) patients.

View Article and Find Full Text PDF

Aging is among the most important risk factors for morbidity and mortality. To contribute toward a molecular understanding of aging, we analyzed age-resolved transcriptomic data from multiple studies. Here, we show that transcript length alone explains most transcriptional changes observed with aging in mice and humans.

View Article and Find Full Text PDF

BACKGROUNDDespite guidelines promoting the prevention and aggressive treatment of ventilator-associated pneumonia (VAP), the importance of VAP as a driver of outcomes in mechanically ventilated patients, including patients with severe COVID-19, remains unclear. We aimed to determine the contribution of unsuccessful treatment of VAP to mortality for patients with severe pneumonia.METHODSWe performed a single-center, prospective cohort study of 585 mechanically ventilated patients with severe pneumonia and respiratory failure, 190 of whom had COVID-19, who underwent at least 1 bronchoalveolar lavage.

View Article and Find Full Text PDF