New computational insights into the mechanism of the Boyland-Sims oxidation of arylamines with peroxydisulfate (S(2)O(8)(2-)) in an alkaline aqueous solution are presented. The key role of arylnitrenium cations, in the case of primary and secondary arylamines, and arylamine dications and immonium cations, in the case of tertiary arylamines, in the formation of corresponding o-aminoaryl sulfates, as prevalent soluble products, and oligoarylamines, as prevalent insoluble products, is proposed on the basis of the AM1 and RM1 computational study of the Boyland-Sims oxidation of aniline, ring-substituted (2-methylaniline, 3-methylaniline, 4-methylaniline, 2,6-dimethylaniline, anthranilic acid, 4-aminobenzoic acid, sulfanilic acid, sulfanilamide, 4-phenylaniline, 4-bromoaniline, 3-chloroaniline, and 2-nitroaniline) and N-substituted anilines (N-methylaniline, diphenylamine, and N,N-dimethylaniline). Arylnitrenium cations and sulfate anions (SO(4)(2-)) are generated by rate-determining two-electron oxidation of primary and secondary arylamines with S(2)O(8)(2-), while arylamine dications/immonium cations and SO(4)(2-) are initially formed by two-electron oxidation of tertiary arylamines with S(2)O(8)(2-).
View Article and Find Full Text PDFSelf-assembled semiconducting, paramagnetic polyaniline nanotubes have been synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in aqueous medium in the presence of colloidal silica particles of an average diameter approximately 12 nm, without added acid. The electrical conductivity of polyaniline nanotubes/silica nanocomposites is in the range (3.3-4.
View Article and Find Full Text PDFConducting polyaniline 5-sulfosalicylate nanotubes and nanorods were synthesized by the template-free oxidative polymerization of aniline in aqueous solution of 5-sulfosalicylic acid, using ammonium peroxydisulfate as an oxidant. The effect of the molar ratio of 5-sulfosalicylic acid to aniline on the molecular structure, molecular weight distribution, morphology, and conductivity of polyaniline 5-sulfosalicylate was investigated. The nanotubes, which have a typical outer diameter of 100-250 nm, with an inner diameter of 10-60 nm, and a length extending from 0.
View Article and Find Full Text PDF