Background: Higher doses of rifampicin for tuberculosis have been shown to improve early bactericidal activity (EBA) and at the same time increase the intolerability due to high exposure at the beginning of treatment. To support dose optimisation of rifampicin, this study investigated new and innovative staggered dosing of rifampicin using clinical trial simulations to minimise tolerability problems and still achieve good efficacy.
Methods: Rifampicin population pharmacokinetics and time-to-positivity models were applied to data from patients receiving 14 days of daily 10-50 mg/kg rifampicin to characterise the exposure-response relationship.
Clin Microbiol Infect
March 2022
Objectives: Mycobacterium avium complex (MAC) bacteria can cause chronic pulmonary disease (PD). Current treatment regimens of azithromycin, ethambutol and rifampicin have culture conversion rates of around 65%. Dynamic, preclinical models to assess the efficacy of treatment regimens are important to guide clinical trial development.
View Article and Find Full Text PDFThe development of optimal treatment regimens in tuberculosis (TB) remains challenging due to the need of combination therapy and possibility of pharmacodynamic (PD) interactions. Preclinical information about PD interactions needs to be used more optimally when designing early bactericidal activity (EBA) studies. In this work, we developed a translational approach which can allow for forward translation to predict efficacy of drug combination in EBA studies using the Multistate Tuberculosis Pharmacometric (MTP) and the General Pharmacodynamic Interaction (GPDI) models informed by in vitro static time-kill data.
View Article and Find Full Text PDFBackground: The weight-band dosing in tuberculosis treatment regimen has been implemented in clinical practice for decades. Patients will receive different number of fixed dose combination tablets according to their weight-band. However, some analysis has shown that weight was not the best covariate to explain variability of rifampicin exposure.
View Article and Find Full Text PDF