Purpose: This study investigated the association between childhood eating behaviors and cortical morphology, in relation to sex and age, in a community sample.
Methods: Neuroimaging data of 71 children (mean age = 9.9 ± 1.
Background: Depression has frequently been associated with smaller hippocampal volume. The hippocampus varies in function along its anterior-posterior axis, with the anterior hippocampus more strongly associated with stress and emotion processing. The goals of this study were to examine the associations among parental history of anxiety/depression, polygenic risk scores for depression (PGS-DEP), and anterior and posterior hippocampal volumes in children and adolescents.
View Article and Find Full Text PDFStudies have shown cortical alterations in individuals with autism spectrum disorders (ASD) as well as in individuals with high polygenic risk for ASD. An important addition to the study of altered cortical anatomy is the investigation of the underlying brain network architecture that may reveal brain-wide mechanisms in ASD and in polygenic risk for ASD. Such an approach has been proven useful in other psychiatric disorders by revealing that brain network architecture shapes (to an extent) the disorder-related cortical alterations.
View Article and Find Full Text PDFBiol Psychiatry Glob Open Sci
October 2023
Background: Schizophrenia is widely recognized as a neurodevelopmental disorder. Abnormal cortical development in otherwise typically developing children and adolescents may be revealed using polygenic risk scores for schizophrenia (PRS-SCZ).
Methods: We assessed PRS-SCZ and cortical morphometry in typically developing children and adolescents (3-21 years, 46.
Genome-wide polygenic scores for educational attainment (PGS-EA) and socioeconomic factors, which are correlated with each other, have been consistently associated with academic achievement and general cognitive ability in children and adolescents. Yet, the independent associations of PGS-EA and socioeconomic factors with specific underlying factors at the neural and neurocognitive levels are not well understood. The main goals of this study were to examine the unique contributions of PGS-EA and parental education to cortical structure and neurocognitive skills in children and adolescents, and the associations among PGS-EA, cortical structure, and neurocognitive skills.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
August 2021
In the last few years, a significant amount of work has aimed to characterize maturational trajectories of cortical development. The role of pericortical microstructure putatively characterized as the gray-white matter contrast (GWC) at the pericortical gray-white matter boundary and its relationship to more traditional morphological measures of cortical morphometry has emerged as a means to examine finer grained neuroanatomical underpinnings of cortical changes. In this work, we characterize the GWC developmental trajectories in a representative sample (n = 394) of children and adolescents (~4 to ~22 years of age), with repeated scans (1-3 scans per subject, total scans n = 819).
View Article and Find Full Text PDFStudies of socioeconomic disparities have largely focused on correlating brain measures with either composite measure of socioeconomic status (SES), or its components-family income or parental education, giving little attention to the component of parental occupation. Emerging evidence suggests that parental occupation may be an important and neglected indicator of childhood and adolescent SES compared to absolute measures of material resources or academic attainment because, while related, it may more precisely capture position in social hierarchy and related health outcomes. On the other hand, although cortical thickness and surface area are brain measures with distinct genetic and developmental origins, large-scale neuroimaging studies investigating regional differences in interaction of the composite measure of SES or its components with cortical thickness and surface area are missing.
View Article and Find Full Text PDFAutism spectrum disorder is a highly prevalent and highly heritable neurodevelopmental condition, but studies have mostly taken traditional categorical diagnosis approach (yes/no for autism spectrum disorder). In contrast, an emerging notion suggests a continuum model of autism spectrum disorder with a normal distribution of autistic tendencies in the general population, where a full diagnosis is at the severe tail of the distribution. We set out to investigate such a viewpoint by investigating the interaction of polygenic risk scores for autism spectrum disorder and Age on neuroimaging measures (cortical thickness and white matter connectivity) in a general population (=391, with age ranging from 3 to 21 years from the Pediatric Imaging, Neurocognition and Genetics study).
View Article and Find Full Text PDFHippocampal circuitry has been posited to be fundamental to positive symptoms in psychosis, but its contributions to other factors important for outcome remains unclear. We hypothesized that longitudinal changes in the hippocampal circuit and concomitant changes of intracortical microstructure are altered in first episode psychosis (FEP) patients and that such changes are associated with negative symptoms and verbal memory. Longitudinal brain scans (2-4 visits over 3-15 months) were acquired for 27 FEP and 29 age- and sex-matched healthy controls.
View Article and Find Full Text PDFAccurate prediction of individuals' brain age is critical to establish a baseline for normal brain development. This study proposes to model brain development with a novel non-negative projective dictionary learning (NPDL) approach, which learns a discriminative representation of multi-modal neuroimaging data for predicting brain age. Our approach encodes the variability of subjects in different age groups using separate dictionaries, projecting features into a low-dimensional manifold such that information is preserved only for the corresponding age group.
View Article and Find Full Text PDFBackground: Previous studies in schizophrenia revealed abnormalities in the cortico-cerebellar-thalamo-cortical circuit (CCTCC) pathway, suggesting the necessity for defining thalamic subdivisions in understanding alterations of brain connectivity.AimsTo parcellate the thalamus into several subdivisions using a data-driven method, and to evaluate the role of each subdivision in the alterations of CCTCC functional connectivity in patients with schizophrenia.
Method: There were 54 patients with schizophrenia and 42 healthy controls included in this study.
Predicting a phenotype and understanding which variables improve that prediction are two very challenging and overlapping problems in the analysis of high-dimensional (HD) data such as those arising from genomic and brain imaging studies. It is often believed that the number of truly important predictors is small relative to the total number of variables, making computational approaches to variable selection and dimension reduction extremely important. To reduce dimensionality, commonly used two-step methods first cluster the data in some way, and build models using cluster summaries to predict the phenotype.
View Article and Find Full Text PDFStructural covariance has recently emerged as a tool to study brain connectivity in health and disease. The main assumption behind the phenomenon of structural covariance is that changes in brain structure during development occur in a coordinated fashion. However, no study has yet explored the correlation of structural brain changes within individuals across development.
View Article and Find Full Text PDFNeuroimaging studies in autism spectrum disorders (ASDs) have provided inconsistent evidence of cortical abnormality. This is probably due to the small sample sizes used in most studies, and important differences in sample characteristics, particularly age, as well as to the heterogeneity of the disorder. To address these issues, we assessed abnormalities in ASD within the Autism Brain Imaging Data Exchange data set, which comprises data from approximately 1100 individuals (~6-55 years).
View Article and Find Full Text PDFFunctional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting, and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects.
View Article and Find Full Text PDFMachine learning approaches have been widely used for the identification of neuropathology from neuroimaging data. However, these approaches require large samples and suffer from the challenges associated with multi-site, multi-protocol data. We propose a novel approach to address these challenges, and demonstrate its usefulness with the Autism Brain Imaging Data Exchange (ABIDE) database.
View Article and Find Full Text PDFVerbal and non-verbal intelligence in children is highly correlated, and thus, it has been difficult to differentiate their neural substrates. Nevertheless, recent studies have shown that verbal and non-verbal intelligence can be dissociated and focal cortical regions corresponding to each have been demonstrated. However, the pattern of structural covariance corresponding to verbal and non-verbal intelligence remains unexplored.
View Article and Find Full Text PDFThe organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature.
View Article and Find Full Text PDFThe developing human brain undergoes an astonishing sequence of events that continuously shape the structural and functional brain connectivity. Distinct regional variations in the timelines of maturational events (synaptogenesis and synaptic pruning) occurring at the synaptic level are reflected in brain measures at macroscopic resolution (cortical thickness and gray matter density). Interestingly, the observed brain changes coincide with cognitive milestones suggesting that the changing scaffold of brain circuits may subserve cognitive development.
View Article and Find Full Text PDFMale sexual arousal (SA) has been known as a multidimensional experience involving closely interrelated and coordinated neurobehavioral components that rely on widespread brain regions. Recent functional neuroimaging studies have shown relation between abnormal/altered dynamics in these circuits and male sexual dysfunction. However, alterations in the topological organization of structural brain networks in male sexual dysfunction are still unclear.
View Article and Find Full Text PDFThe etiology and maintenance of insomnia are proposed to be associated with increased cognitive and physiological arousal caused by acute stressors and associated cognitive rumination. A core feature of such hyperarousal theory of insomnia involves increased sensory processing that interferes with the onset and maintenance of sleep. In this work, we collected structural magnetic resonance imaging data from 35 patients with primary insomnia and 35 normal sleepers and applied structural covariance analysis to investigate whether insomnia is associated with disruptions in structural brain networks centered at the sensory regions (primary visual, primary auditory, and olfactory cortex).
View Article and Find Full Text PDFIn systems neuroscience, the term "connectivity" has been defined in numerous ways, according to the particular empirical modality from which it is derived. Due to large differences in the phenomena measured by these modalities, the assumptions necessary to make inferences about axonal connections, and the limitations accompanying each, brain connectivity remains an elusive concept. Despite this, only a handful of studies have directly compared connectivity as inferred from multiple modalities, and there remains much ambiguity over what the term is actually referring to as a biological construct.
View Article and Find Full Text PDFFunctional neuroimaging studies have revealed abnormal brain dynamics of male sexual arousal (SA) in psychogenic erectile dysfunction (pED). However, the neuroanatomical correlates of pED are still unclear. In this work, we obtained cortical thickness (CTh) measurements from structural magnetic resonance images of 40 pED patients and 39 healthy control subjects.
View Article and Find Full Text PDFSeveral studies using magnetic resonance imaging (MRI) scans have shown developmental trajectories of cortical thickness. Cognitive milestones happen concurrently with these structural changes, and a delay in such changes has been implicated in developmental disorders such as attention-deficit/hyperactivity disorder (ADHD). Accurate estimation of individuals' brain maturity, therefore, is critical in establishing a baseline for normal brain development against which neurodevelopmental disorders can be assessed.
View Article and Find Full Text PDF