The maximum energy obtainable within a single aperture of a high-energy petawatt-class (HEPW) laser is typically limited by the pulse compressor. This work evaluates the potential impact of two new pulse compression grating technologies (HELD gratings and TM polarization) on HEPW laser systems. A compressor architecture is proposed that implements these grating advancements in order to support ∼6× higher pulse energies than currently demonstrated.
View Article and Find Full Text PDFPhys Rev Lett
February 2024
We extend the split-optic approach for mitigating filamentation in a thick optical component previously proposed for small beams to conditions relevant to high-power lasers. The split-optic approach divides a thick optic into two thinner optics separated by an airgap to reduce filamentation through diffraction management. Our numerical study focuses on filamentation of a flat-top beam with intensity modulation noise sources passing through a split-optic system.
View Article and Find Full Text PDFLaser drilling and cutting of materials is well established commercially, although its throughput and efficiency limit applications. This work describes a novel approach to improve laser drilling rates and reduce laser system energy demands by using a gated continuous wave (CW) laser to create a shallow melt pool and a UV ps-pulsed laser to impulsively expel the melt efficiency and effectively. Here, we provide a broad parametric study of this approach applied to common metals, describing the role of fluence, power, spot size, pulse-length, sample thickness, and material properties.
View Article and Find Full Text PDFThe results of detailed experiments and high fidelity modeling of melt pool dynamics, droplet ejections and hole drilling produced by periodic modulation of laser intensity are presented. Ultra-high speed imaging revealed that melt pool oscillations can drive large removal of material when excited at the natural oscillation frequency. The physics of capillary surface wave excitation is discussed and simulation is provided to elucidate the experimental results.
View Article and Find Full Text PDFThe Bespalov-Talanov gain (BT-gain) and IL-rule (i.e., the product of input intensity and self-focusing length is constant) expressions are examined and generalized for filamentation under realistic conditions associated with high power lasers: filamentation seeded by both amplitude and phase perturbations on a large, flat-top beam, and the impact of cross-phase modulation from unconverted light in UV frequency-converted lasers.
View Article and Find Full Text PDFThe propagation of 355-nm, nanosecond pulses in absorbing glasses is investigated for the specific case examples of the broadband absorbing glass SuperGrey and the Ce-doped silica glass. The study involves different laser irradiation conditions and material characterization methods to capture the transient material behaviors leading to laser-induced damage. Two damage-initiation mechanisms were identified: (1) melting of the surface as a result of increased temperature; and (2) self-focusing caused by a transient change in the index of refraction.
View Article and Find Full Text PDFWe present two strategies to minimize laser damage in transparent conductive films. The first consists of improving heat dissipation by selection of substrates with high thermal diffusivity or by addition of capping layer heatsinks. The second is reduction of bulk energy absorption by lowering free carrier density and increasing mobility, while maintaining film conductance with thicker films.
View Article and Find Full Text PDFWe investigate the role of defects in laser-induced damage of fused silica and of silica coatings produced by e-beam and PIAD processes which are used in damage resistant, multi-layer dielectric, reflective optics. We perform experiments using 1053 nm, 1-60 ps laser pulses with varying beam size, number of shots, and pulse widths in order to understand the characteristics of defects leading to laser-induced damage. This pulse width range spans a transition in mechanisms from intrinsic material ablation for short pulses to defect-dominated damage for longer pulses.
View Article and Find Full Text PDFLaser-induced damage with ps pulse widths straddles the transition from intrinsic, multi-photon ionization and avalanche ionization-based ablation with fs pulses to defect-dominated, thermal-based damage with ns pulses. We investigated the morphology of damage for fused silica and silica coatings between 1 ps and 60 ps at 1053 nm. Using calibrated laser-induced damage experiments, in situ imaging, and high-resolution optical microscopy, atomic force microscopy, and scanning electron microscopy, we show that defects play an important role in laser-induced damage down to 1 ps.
View Article and Find Full Text PDFHigh energy laser systems are ultimately limited by laser-induced damage to their critical components. This is especially true of damage to critical fused silica optics, which grows rapidly upon exposure to additional laser pulses. Much progress has been made in eliminating damage precursors in as-processed fused silica optics (the advanced mitigation process, AMP3), and very high damage resistance has been demonstrated in laboratory studies.
View Article and Find Full Text PDFLaser damage mechanisms of two conductive wide-bandgap semiconductor films - indium tin oxide (ITO) and silicon doped GaN (Si:GaN) were studied via microscopy, spectroscopy, photoluminescence (PL), and elemental analysis. Nanosecond laser pulse exposures with a laser photon energy (1.03 eV, 1064 nm) smaller than the conductive films bandgaps were applied and radically different film damage morphologies were produced.
View Article and Find Full Text PDFIn situ ablation of thin metal films on fused silica substrates by picosecond class lasers was investigated as a method of characterizing the beam at the sample plane. The technique involved plotting the areas enclosed by constant fluence contours identified in optical microscope images of the ablation sites versus the logs of the pulse energies. Inconel films on commercially available neutral density filters as well as magnetron sputtered gold films were used.
View Article and Find Full Text PDFAs applications of lasers demand higher average powers, higher repetition rates, and longer operation times, optics will need to perform well under unprecedented conditions. We investigate the optical degradation of fused silica surfaces at 351 nm for up to 10(9) pulses with pulse fluences up to 12 J/cm(2). The central result is that the transmission loss from defect generation is a function of the pulse intensity, I(p), and total integrated fluence, φ(T), and is influenced by oxygen partial pressure.
View Article and Find Full Text PDFIncreases in the laser damage threshold of fused silica have been driven by the successive elimination of near-surface damage precursors such as polishing residue, fractures, and inorganic salts. In this work, we show that trace impurities in ultrapure water used to process fused silica optics may be responsible for the formation of carbonaceous deposits. We use surrogate materials to show that organic compounds precipitated onto fused silica surfaces form discrete damage precursors.
View Article and Find Full Text PDFModeling the lifetime of a fused silica optic is described for a multiple beam, MJ-class laser system. This entails combining optic processing data along with laser shot data to account for complete history of optic processing and shot exposure. Integrating with online inspection data allows for the construction of a performance metric to describe how an optic performs with respect to the model.
View Article and Find Full Text PDFThe use of any optical material is limited at high fluences by laser-induced damage to optical surfaces. In many optical materials, the damage results from a series of sources which initiate at a large range of fluences and intensities. Much progress has been made recently eliminating silica surface damage due to fracture-related precursors at relatively low fluences (i.
View Article and Find Full Text PDFSurface damage is known to occur at fluences well below the intrinsic limit of the fused silica. A native surface precursor can absorb sub band-gap light and initiate a process which leads to catastrophic damage many micrometers deep with prominent fracture networks. Previously, the absorption front model of damage initiation has been proposed to explain how this nano-scale absorption can lead to macro-scale damage.
View Article and Find Full Text PDFThe transient changes in the optical properties of bulk DKDP material arising from its exposure to high temperatures and pressures associated with localized laser energy deposition are investigated. Two methods for initiation of laser-induced breakdown are used, intrinsic, involving relatively large energy deposition brought about by focusing of the laser beam to high intensities, and extrinsic, arising from more localized deposition due to the presence of pre-existing absorbing damage initiating defects. Each method leads to a very different volume of material being affected, which provides for different material thermal relaxation times to help better understand the processes involved.
View Article and Find Full Text PDFSurface laser damage limits the lifetime of optics for systems guiding high fluence pulses, particularly damage in silica optics used for inertial confinement fusion-class lasers (nanosecond-scale high energy pulses at 355 nm/3.5 eV). The density of damage precursors at low fluence has been measured using large beams (1-3 cm); higher fluences cannot be measured easily since the high density of resulting damage initiation sites results in clustering.
View Article and Find Full Text PDFWe present density-functional theory calculations of the optical absorption spectra of silica glass for temperatures up to 2400 K. The calculated spectra exhibit exponential tails near the fundamental absorption edge that follow the Urbach rule in good agreement with experiments. We discuss the accuracy of our results by comparing to hybrid exchange correlation functionals.
View Article and Find Full Text PDFThe optical damage threshold of indentation-induced flaws on fused silica surfaces was explored. Mechanical flaws were characterized by laser damage testing, as well as by optical, secondary electron, and photoluminescence microscopy. Localized polishing, chemical leaching, and the control of indentation morphology were used to isolate the structural features that limit optical damage.
View Article and Find Full Text PDFPhys Rev B Condens Matter
May 1992