Publications by authors named "Buddhini C N Vithanage"

With their unique photochemical properties, porphyrins have remained for decades the most interested chemicals as photonic materials for applications ranging from chemistry, biology, medicine, to photovoltaic. Porphyrins can self-assemble into higher order structures. However, information has been scant on the kinetics and structural evolution during porphyrin assembly and disassembly.

View Article and Find Full Text PDF

The sample inner filter effect (IFE) induces spectral distortion and affects the linearity between intensity and analyte concentration in fluorescence, Raman, surface enhanced Raman, and Rayleigh light scattering measurements. Existing spectrofluorometric-based measurements treat light scattering and absorption identically in their sample IFEs. Reported herein is the finding that photon scattering and absorption differ drastically in inducing the sample IFE in Stokes-shifted fluorescence (SSF) spectrum, resonance synchronous spectrum (RS2), and the polarized resonance synchronous spectrum (PRS2) measurements.

View Article and Find Full Text PDF

Fluorophores are important but optically complicated photonic materials as they are simultaneous photon absorbers, emitters, and scatterers. Existing studies on fluorophore optical properties have been focused almost exclusively on its photon absorption and Stokes-shifted fluorescence (SSF) with scant information on the fluorophore photon scattering and on-resonance fluorescence (ORF). Presented herein is a unified theoretical framework and experimental approach for quantification of the fluorophore SSF, ORF, and scattering depolarization and anisotropy using a combination of fluorophore UV-vis, fluorescence emission, and resonance synchronous spectroscopic spectral measurements.

View Article and Find Full Text PDF

Existing studies on molecular fluorescence have almost exclusively been focused on Stokes-shifted fluorescence spectroscopy (SSF) in which the emitted photon is detected at the wavelengths longer than that for the excitation photons. Information on fluorophore on-resonance fluorescence (ORF) and resonance Rayleigh scattering (RRS) is limited and often problematic due to the complex interplay of the fluorophore photon absorption, ORF emission, RRS, and solvent Rayleigh scattering. Reported herein is a relatively large-scale systematic study on fluorophore ORF and RRS using the conventional UV-vis extinction and SSF measurements in combination with the recently reported ratiometric resonance synchronous spectroscopic (R2S2, pronounced as "R-Two-S-Two") method.

View Article and Find Full Text PDF