Publications by authors named "Buddha Deka Boruah"

Article Synopsis
  • The study addresses the urgent need for safer, cost-effective on-chip micro-batteries with high-capacity electrodes to power future miniaturized smart devices.
  • It focuses on improving micro-electrode stability and charge storage capacity by incorporating a PEDOT layer in the device structure, leading to enhanced performance.
  • The results show significant improvements in charge storage capacity and energy/power output, marking a key advancement for portable electronic applications.
View Article and Find Full Text PDF

Aqueous rechargeable zinc-ion batteries (ZIBs) are increasingly recognized as promising energy storage systems for mini-grid and mini-off-grid applications due to their advantageous characteristics such as high safety, affordability, and considerable theoretical capacity. However, the long-term cycling performance of ZIBs is hampered by challenges including the uncontrolled dendrite formation, the passivation, and the occurrence of the hydrogen evolution reaction (HER) on the Zn anode. In this study, enhancing ZIB performance by implementing oxide material coatings on Zn metal, serving as a physical barrier at the electrode-electrolyte interfaces to mitigate dendrite growth and suppress the HER is concentrated.

View Article and Find Full Text PDF

The downsizing of microscale energy storage devices is crucial for powering modern on-chip technologies by miniaturizing electronic components. Developing high-performance microscale energy devices, such as micro-supercapacitors, is essential through processing smart electrodes for on-chip structures. In this context, we introduce porous gold (Au) interdigitated electrodes (IDEs) as current collectors for micro-supercapacitors, using polyaniline as the active material.

View Article and Find Full Text PDF

The downsizing of microscale energy storage devices plays a crucial role in powering modern emerging devices. Therefore, the scientific focus on developing high-performance microdevices, balancing energy density and power density, becomes essential. In this context, we explore an advanced Microplotter technique to fabricate hybrid planar Zn-ion microcapacitors (ZIMCs) that exhibit dual charge storage characteristics, with an electrical double layer capacitor type activated carbon anode and a battery type VO (B) cathode, aiming to achieve energy density surpassing supercapacitors and power density exceeding batteries.

View Article and Find Full Text PDF

Photoenhanced batteries, where light improves the electrochemical performance of batteries, have gained much interest. Recent reports suggest that light-to-heat conversion can also play an important role. In this work, we study Prussian blue analogues (PBAs), which are known to have a high photothermal heating efficiency and can be used as cathodes for Li-ion batteries.

View Article and Find Full Text PDF

Safe, accurate, and reliable analysis of urinary biomarkers is clinically important for early detection and monitoring of the progression of chronic kidney disease (CKD), as it has become one of the world's most prevalent non-communicable diseases. However, current technologies for measuring urinary biomarkers are either time-consuming and limited to well-equipped hospitals or lack the necessary sensitivity for quantitative analysis and post a health risk to frontline practitioners. Here we report a robust paper-based dual functional biosensor, which is integrated with the clinical urine sampling vial, for the simultaneous and quantitative analysis of pH and glucose in urine.

View Article and Find Full Text PDF

Zinc metal is a promising candidate for anodes in zinc-ion batteries (ZIBs), but its widespread implementation is hindered by dendrite growth in aqueous electrolytes. Dendrites lead to undesirable side reactions, such as hydrogen evolution, passivation, and corrosion, causing reduced capacity during prolonged cycling. In this study, an approach is explored to address this challenge by directly growing 1D zinc oxide (ZnO) nanorods (NRs) and 2D ZnO nanoflakes (NFs) on Zn anodes, forming artificial layers to enhance ZIB performance.

View Article and Find Full Text PDF

Solar power represents an abundant and readily available source of renewable energy. However, its intermittent nature necessitates external energy storage solutions, which can often be expensive, bulky, and associated with energy conversion losses. This study introduces the concept of a photo-accelerated battery that seamlessly integrates energy harvesting and storage functions within a single device.

View Article and Find Full Text PDF

Photobatteries, batteries with a light-sensitive electrode, have recently been proposed as a way of simultaneously capturing and storing solar energy in a single device. Despite reports of photocharging with multiple different electrode materials, the overall mechanism of operation remains poorly understood. Here, we use optical reflection microscopy to investigate light-induced charging in LiVO electrodes.

View Article and Find Full Text PDF

Given the rapid progress and widespread adoption of advanced energy storage devices, there has been a growing interest in aqueous capacitors that offer non-flammable properties and high safety standards. Consequently, extensive research efforts have been dedicated to investigating zinc anodes and low-cost carbonaceous cathode materials. Despite these efforts, the development of high-performance zinc-ion capacitors (ZICs) still faces challenges, such as limited cycling stability and low energy densities.

View Article and Find Full Text PDF

The development of photo-enhanced lithium-ion batteries, where exposing the electrodes to light results in higher capacities, higher rate performance or self-charging, has recently gained substantial traction. The challenge in these devices lies in the realisation of photo-electrodes with good optical and electrochemical properties. Herein, we propose copper-hexahydroxybenzene as the active photo-electrode material which both harvests light and stores energy.

View Article and Find Full Text PDF

The development of devices with dual solar energy-harvesting and storage functionalities has recently gained significant traction for off-grid power supply. In their most compact embodiment, these devices rely on the same electrode to harvest and store energy; however, in this approach, the development of energy-efficient photoelectrodes with intrinsic characteristics of good optical and electrochemical activities remains challenging. Here, we propose photoelectrodes with a porous carbon coated on a zinc oxide-cadmium sulfide heterostructure as an energy-efficient photocathode for photo-accelerated zinc ion capacitors (Photo-ZICs).

View Article and Find Full Text PDF

Off-grid power sources are becoming increasingly important for applications ranging from autonomous sensor networks to fighting energy poverty. Interactions of light with certain classes of battery and capacitor materials have recently gained attention to enhance the rate performance or to even charge energy storage devices directly with light. Interestingly, these devices have the potential to reduce the volume and cost of autonomous power sources.

View Article and Find Full Text PDF

The development of batteries that can be recharged directly by light, without the need for external solar cells or external power supplies, has recently gained interest for powering off-grid devices. Vanadium dioxide (VO) has been studied as a promising photocathode for zinc-ion batteries because it can both store energy and harvest light. However, the efficiency of the photocharging process depends on electrode structure and charge transport layers.

View Article and Find Full Text PDF

Systems for harvesting and storing solar energy have found practical applications ranging from solar farms to autonomous smart devices. Generally, these energy solutions consist of solar cells for light harvesting and rechargeable batteries to match the solar energy supply to consumption demands. Rather than having a separate energy harvesting and storing device, we report photo-rechargeable zinc-ion batteries (ν-ZIBs) using a photoactive cathode composed of layer-by-layer grown zinc oxide and molybdenum disulfide.

View Article and Find Full Text PDF

Solar energy is one of the most actively pursued renewable energy sources, but like many other sustainable energy sources, its intermittent character means solar cells have to be connected to an energy storage system to balance production and demand. To improve the efficiency of this energy conversion and storage process, photobatteries have recently been proposed where one of the battery electrodes is made from a photoactive material that can directly be charged by light without using solar cells. Here, we present photorechargeable lithium-ion batteries (Photo-LIBs) using photocathodes based on vanadium pentoxide nanofibers mixed with P3HT and rGO additives.

View Article and Find Full Text PDF

Off-grid energy storage devices are becoming increasingly important to power distributed applications, such as the Internet of things, and smart city ubiquitous sensor systems. To date, this has been achieved by combining an energy storage device, e.g.

View Article and Find Full Text PDF

Currently, the development of ultraviolet (UV) photodetectors (PDs) has attracted the attention of the research community because of the vast range of applications of photodetectors in modern society. A variety of wide-band gap nanomaterials have been utilized for UV detection to achieve higher photosensitivity. Specifically, zinc oxide (ZnO) nanomaterials have attracted significant attention primarily due to their additional properties such as piezo-phototronic and pyro-phototronic effects, which allow the fabrication of high-performance and low power consumption-based UV PDs.

View Article and Find Full Text PDF

An on-chip microsupercapacitor (MSC) pattern is obtained by layer-by-layer spray deposition of both manganese dioxide (MnO) nanoparticle-coated carbon nanotubes (MnO-CNTs) and MnO nanosheet-decorated reduced graphene oxide (MnO-rGO) on mechanically robust, flexible polyethylene terephthalate. Layer-by-layer patterning of MSC electrodes offers rapid in-plane diffusion of electrolyte ions in electrodes the layered electrode and hence ultrahigh capacitance and energy density of 7.43 mF/cm (32300 mF/cm) and 0.

View Article and Find Full Text PDF
Article Synopsis
  • - The pyro-phototronic effect enhances the performance of pyroelectric semiconductors like zinc oxide (ZnO) nanorods by increasing the density of photogenerated charges, particularly when doped with halogens like chlorine.
  • - Chlorine-doped ZnO nanorods demonstrate a significant improvement in photoresponse, achieving nearly a 333% increase in response current and a 405% increase in pyrocurrent under specific UV intensity conditions without the need for external voltage.
  • - This research indicates that manipulating the pyro-phototronic effect can lead to better efficiency in photodetectors through improved parameters such as responsivity and quantum efficiency.
View Article and Find Full Text PDF

Herein, a novel heterostructure was fabricated by combining electrochemically and optically active materials to achieve a high capacitive response of 896 F g at 5 A g. A network of ZnCoO nanorods (NRs) was directly grown on a three-dimensional matrix of H : ZnO NRs (ZnCoO/H : ZnO NRs) that offered synergistic advantages by providing an optimum ion/charge transportation path, large electrochemically active surface area, and stable capacitive response during the electrolytic process. Furthermore, the fabricated solid-state asymmetric supercapacitor ZnCoO/H : ZnO NRs//activated carbon induced a large potential window of 1.

View Article and Find Full Text PDF

The unique photo-charge characteristics of chlorine-doped zinc oxide nanorods (Cl-ZnO NRs) are explored for the first time in ultraviolet (UV) photodetector (PD) that offers an outstanding self-powered photoresponse towards low UV illumination signals. A self-powered Cl-ZnO NRs PD exhibits superior photon detection speed of the order of a few ms with high sensitivity and photoelasticity. Therefore, the presented PD opens up a novel route to fabricate highly efficient self-powered PDs on a large scale without employing complex multilayer systems.

View Article and Find Full Text PDF

The nonlinear electrical characteristic of carbon nanodots (CNDs) has revealed important physical phenomena of charge trapping playing a dominant role in surface interactions. Functional groups on the surface of CNDs attract ambient water molecules which in turn act as charge traps and give rise to electrical hysteresis that plays a dominant role in understanding charge transport in CNDs on surface interactions. Hysteresis in the current-voltage response is further utilized to study the interaction of the CNDs with nitrogen dioxide gas as an external stimuli.

View Article and Find Full Text PDF

Conjugation of highly dense colloidal zinc oxide quantum dots (ZnO QDs) on multiwalled carbon nanotubes (ZnO QDs@MWCNTs) is achieved for high performance ultraviolet (UV) photodetection. Significant improvement in the photoresponse of the ZnO QDs@MWCNTs photodetector (PD) is established as compared to a pristine ZnO QDs PD. The conjugation of two constituents allows the direct transfer of photoinduced charge carriers in ZnO QDs to MWCNTs for an efficient electrical path that considerably reduces charge recombination during UV exposure.

View Article and Find Full Text PDF

Light absorption efficiency and doping induced charge carrier density play a vital role in self-powered optoelectronic devices. Unique vanadium-doped zinc oxide nanoflake array (VZnO NFs) is fabricated for self-powered ultraviolet (UV) photodetection. The light harvesting efficiency drastically improved from 84% in ZnO NRs to 98% in VZnO NFs.

View Article and Find Full Text PDF