Publications by authors named "Buckler E"

Maize was domesticated from teosinte, a wild grass, by approximately 6300 years ago in Mexico. After initial domestication, early farmers continued to select for advantageous morphological and biochemical traits in this important crop. However, the timing and sequence of character selection are, thus far, known only for morphological features discernible in corn cobs.

View Article and Find Full Text PDF

Future advances in plant genomics will make it possible to scan a genome for polymorphisms associated with qualitative and quantitative traits. Before this potential can be realized, we must understand the nature of linkage disequilibrium (LD) within a genome. LD, the nonrandom association of alleles at different loci, plays an integral role in association mapping, and determines the resolution of an association study.

View Article and Find Full Text PDF

Genomics has developed a wide range of tools to identify genes that play roles in specific pathways. However, relating individual genes and alleles to agronomic traits is still quite challenging. We describe how association analysis can be used to relate natural variation at candidate genes with agronomic phenotypes.

View Article and Find Full Text PDF

Maize is both phenotypically and genetically diverse. Sequence studies generally confirm the extensive genetic variability in modern maize is consistent with a lack of selection. For more than 6,000 years, Native Americans and modern breeders have exploited the tremendous genetic diversity of maize (Zea mays ssp.

View Article and Find Full Text PDF

There exists extraordinary morphological and genetic diversity among the maize landraces that have been developed by pre-Columbian cultivators. To explain this high level of diversity in maize, several authors have proposed that maize landraces were the products of multiple independent domestications from their wild relative (teosinte). We present phylogenetic analyses based on 264 individual plants, each genotyped at 99 microsatellites, that challenge the multiple-origins hypothesis.

View Article and Find Full Text PDF

Surveys of nucleotide diversity are beginning to show how genomes have been shaped by evolution. Nucleotide diversity is also being used to discover the function of genes through the mapping of quantitative trait loci (QTL) in structured populations, the positional cloning of strong QTL, and association mapping.

View Article and Find Full Text PDF

Association studies based on linkage disequilibrium (LD) can provide high resolution for identifying genes that may contribute to phenotypic variation. We report patterns of local and genome-wide LD in 102 maize inbred lines representing much of the worldwide genetic diversity used in maize breeding, and address its implications for association studies in maize. In a survey of six genes, we found that intragenic LD generally declined rapidly with distance (r(2) < 0.

View Article and Find Full Text PDF

Historically, association tests have been used extensively in medical genetics, but have had virtually no application in plant genetics. One obstacle to their application is the structured populations often found in crop plants, which may lead to nonfunctional, spurious associations. In this study, statistical methods to account for population structure were extended for use with quantitative variation and applied to our evaluation of maize flowering time.

View Article and Find Full Text PDF

The plant MADS-box regulatory gene family includes several loci that control different aspects of inflorescence and floral development. Orthologs to the Arabidopsis thaliana MADS-box floral meristem genes APETALA1 and CAULIFLOWER and the floral organ identity genes APETALA3 and PISTILLATA were isolated from the congeneric species Arabidopsis lyrata. Analysis of these loci between these two Arabidopsis species, as well as three other more distantly related taxa, reveal contrasting dynamics of molecular evolution between these paralogous floral regulatory genes.

View Article and Find Full Text PDF

Meiotic drive is the subversion of meiosis so that particular genes are preferentially transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome; however, in maize we propose that meiotic drive is responsible for the evolution of large repetitive DNA arrays on all chromosomes. A maize meiotic drive locus found on an uncommon form of chromosome 10 [abnormal 10 (Ab10)] may be largely responsible for the evolution of heterochromatic chromosomal knobs, which can confer meiotic drive potential to every maize chromosome.

View Article and Find Full Text PDF

Type 1 serine/threonine protein phosphatases (PP1s) play key roles in many cellular processes. To understand the evolutionary relationships among PP1s from various kingdoms and to provide a valid basis to evaluate the structure-function relationships of these phosphatases, 44 PP1 sequences were aligned, revealing a high sequence similarity among PP1 homologs. About one-third of the total amino acids are conserved in all the sequences studied.

View Article and Find Full Text PDF

Although nuclear ribosomal DNA (rDNA) repeats evolve together through concerted evolution, some genomes contain a considerable diversity of paralogous rDNA. This diversity includes not only multiple functional loci but also putative pseudogenes and recombinants. We examined the occurrence of divergent paralogues and recombinants in Gossypium, Nicotiana, Tripsacum, Winteraceae, and Zea ribosomal internal transcribed spacer (ITS) sequences.

View Article and Find Full Text PDF

Zea and Tripsacum nuclear ribosomal internal transcribed spacer (ITS) sequences were used to evaluate patterns of concerted evolution, rates of substitutions, patterns of methylation-induced deamination, and structural constraints of the ITS. ITS pseudogenes were identified by their phylogenetic position, differences in nucleotide composition, extensive deamination at ancestral methylation sites, and substitutions resulting in low-stability secondary RNA structures. Selection was important in shaping the kinds of polymorphisms and substitutions observed in the ITS.

View Article and Find Full Text PDF

Ribosomal internal transcribed spacer (ITS) sequences were used to evaluate the phylogenetics of Zea and Tripsacum. Maximum likelihood and polymorphism parsimony were used for phylogenetic reconstructions. Zea ITS nucleotide diversity was high compared to other plant species, but approximately equivalent to other maize loci.

View Article and Find Full Text PDF