Publications by authors named "Buckle V"

Eukaryotic genomes are organized by loop extrusion and sister chromatid cohesion, both mediated by the multimeric cohesin protein complex. Understanding how cohesin holds sister DNAs together, and how loss of cohesion causes age-related infertility in females, requires knowledge as to cohesin's stoichiometry in vivo. Using quantitative super-resolution imaging, we identified two discrete populations of chromatin-bound cohesin in postreplicative human cells.

View Article and Find Full Text PDF

Determining the mechanisms by which genes are switched on and off during development is a key aim of current biomedical research. Gene transcription has been widely observed to occur in a discontinuous fashion, with short bursts of activity interspersed with periods of inactivity. It is currently not known if or how this dynamic behaviour changes as mammalian cells differentiate.

View Article and Find Full Text PDF

DNA fluorescence in situ hybridization (FISH) has been a central technique in advancing our understanding of how chromatin is organized within the nucleus. With the increasing resolution offered by super-resolution microscopy, the optimal maintenance of chromatin structure within the nucleus is essential for accuracy in measurements and interpretation of data. However, standard 3D-FISH requires potentially destructive heat denaturation in the presence of chaotropic agents such as formamide to allow access to the DNA strands for labeled FISH probes.

View Article and Find Full Text PDF
Article Synopsis
  • Chromosome conformation capture (3C) is a versatile tool for exploring biological questions, but existing methods either offer low-resolution data for the entire genome or higher resolution at a few specific locations.
  • This study presents two key improvements to 3C techniques, significantly reducing noise from reporter events by isolating nuclei after ligation.
  • Using Nuclear-Titrated Capture-C, the authors achieved reproducible, high-resolution genome-wide interaction profiles, focusing on 8055 gene promoters in erythroid cells, and examined the influence of promoter hubs and super-enhancers on gene regulation.
View Article and Find Full Text PDF

The investigation of inherited disorders of erythropoiesis has elucidated many of the principles underlying the production of normal red blood cells and how this is perturbed in human disease. Congenital Dyserythropoietic Anaemia type 1 (CDA-I) is a rare form of anaemia caused by mutations in two genes of unknown function: CDAN1 and CDIN1 (previously called C15orf41), whilst in some cases, the underlying genetic abnormality is completely unknown. Consequently, the pathways affected in CDA-I remain to be discovered.

View Article and Find Full Text PDF

Three-dimensional (3D) chromatin organization plays a key role in regulating mammalian genome function; however, many of its physical features at the single-cell level remain underexplored. Here, we use live- and fixed-cell 3D super-resolution and scanning electron microscopy to analyze structural and functional nuclear organization in somatic cells. We identify chains of interlinked ~200- to 300-nm-wide chromatin domains (CDs) composed of aggregated nucleosomes that can overlap with individual topologically associating domains and are distinct from a surrounding RNA-populated interchromatin compartment.

View Article and Find Full Text PDF

Background: Congenital dyserythropoietic anaemia type I (CDA-I) is a hereditary anaemia caused by biallelic mutations in the widely expressed genes and . Little is understood about either protein and it is unclear in which cellular pathways they participate.

Methods: Genetic analysis of a cohort of patients with CDA-I identifies novel pathogenic variants in both known causative genes.

View Article and Find Full Text PDF

Mammalian gene expression patterns are controlled by regulatory elements, which interact within topologically associating domains (TADs). The relationship between activation of regulatory elements, formation of structural chromatin interactions and gene expression during development is unclear. Here, we present Tiled-C, a low-input chromosome conformation capture (3C) technique.

View Article and Find Full Text PDF

We investigate the three-dimensional (3D) conformations of the α-globin locus at the single-allele level in murine embryonic stem cells (ESCs) and erythroid cells, combining polymer physics models and high-resolution Capture-C data. Model predictions are validated against independent fluorescence in situ hybridization (FISH) data measuring pairwise distances, and Tri-C data identifying three-way contacts. The architecture is rearranged during the transition from ESCs to erythroid cells, associated with the activation of the globin genes.

View Article and Find Full Text PDF

Background: Deletions removing 100s-1000s kb of DNA, and variable numbers of poorly characterised genes, are often found in patients with a wide range of developmental abnormalities. In such cases, understanding the contribution of the deletion to an individual's clinical phenotype is challenging.

Methods: Here, as an example of this common phenomenon, we analysed 41 patients with simple deletions of ~177 to ~2000 kb affecting one allele of the well-characterised, gene dense, distal region of chromosome 16 (16p13.

View Article and Find Full Text PDF

How chromosome organization is related to genome function remains poorly understood. Cohesin, loop extrusion, and CCCTC-binding factor (CTCF) have been proposed to create topologically associating domains (TADs) to regulate gene expression. Here, we examine chromosome conformation in embryonic stem cells lacking cohesin and find, as in other cell types, that cohesin is required to create TADs and regulate A/B compartmentalization.

View Article and Find Full Text PDF

To safeguard genome integrity in response to DNA double-strand breaks (DSBs), mammalian cells mobilize the neighbouring chromatin to shield DNA ends against excessive resection that could undermine repair fidelity and cause damage to healthy chromosomes. This form of genome surveillance is orchestrated by 53BP1, whose accumulation at DSBs triggers sequential recruitment of RIF1 and the shieldin-CST-POLα complex. How this pathway reflects and influences the three-dimensional nuclear architecture is not known.

View Article and Find Full Text PDF

The study of cellular processes and gene regulation in terminal erythroid development has been greatly facilitated by the generation of an immortalised erythroid cell line derived from Human Umbilical Derived Erythroid Precursors, termed HUDEP-2 cells. The ability to efficiently genome edit HUDEP-2 cells and make clonal lines hugely expands their utility as the insertion of clinically relevant mutations allows study of potentially every genetic disease affecting red blood cell development. Additionally, insertion of sequences encoding short protein tags such as Strep, FLAG and Myc permits study of protein behaviour in the normal and disease state.

View Article and Find Full Text PDF

The promoters of mammalian genes are commonly regulated by multiple distal enhancers, which physically interact within discrete chromatin domains. How such domains form and how the regulatory elements within them interact in single cells is not understood. To address this we developed Tri-C, a new chromosome conformation capture (3C) approach, to characterize concurrent chromatin interactions at individual alleles.

View Article and Find Full Text PDF

Self-interacting chromatin domains encompass genes and their cis-regulatory elements; however, the three-dimensional form a domain takes, whether this relies on enhancer-promoter interactions, and the processes necessary to mediate the formation and maintenance of such domains, remain unclear. To examine these questions, here we use a combination of high-resolution chromosome conformation capture, a non-denaturing form of fluorescence in situ hybridisation and super-resolution imaging to study a 70 kb domain encompassing the mouse α-globin regulatory locus. We show that this region forms an erythroid-specific, decompacted, self-interacting domain, delimited by frequently apposed CTCF/cohesin binding sites early in terminal erythroid differentiation, and does not require transcriptional elongation for maintenance of the domain structure.

View Article and Find Full Text PDF

The three-dimensional (3D) organization of chromosomes can be probed using methods like Capture-C. However, it is unclear how such population-level data relate to the organization within a single cell, and the mechanisms leading to the observed interactions are still largely obscure. We present a polymer modeling scheme based on the assumption that chromosome architecture is maintained by protein bridges, which form chromatin loops.

View Article and Find Full Text PDF

To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy.

View Article and Find Full Text PDF

Abnormally expanded DNA repeats are associated with several neurodegenerative diseases. In Friedreich's ataxia (FRDA), expanded GAA repeats in intron 1 of the frataxin gene (FXN) reduce FXN mRNA levels in averaged cell samples through a poorly understood mechanism. By visualizing FXN expression and nuclear localization in single cells, we show that GAA-expanded repeats decrease the number of FXN mRNA molecules, slow transcription, and increase FXN localization at the nuclear lamina (NL).

View Article and Find Full Text PDF

Background: Autism spectrum disorders (ASDs) are common and have a strong genetic basis, yet the cause of ∼70-80% ASDs remains unknown. By clinical cytogenetic testing, we identified a family in which two brothers had ASD, mild intellectual disability and a chromosome 22 pericentric inversion, not detected in either parent, indicating de novo mutation with parental germinal mosaicism. We hypothesised that the rearrangement was causative of their ASD and localised the chromosome 22 breakpoints.

View Article and Find Full Text PDF

The congenital dyserythropoietic anemias are a heterogeneous group of rare disorders primarily affecting erythropoiesis with characteristic morphological abnormalities and a block in erythroid maturation. Mutations in the CDAN1 gene, which encodes Codanin-1, underlie the majority of congenital dyserythropoietic anemia type I cases. However, no likely pathogenic CDAN1 mutation has been detected in approximately 20% of cases, suggesting the presence of at least one other locus.

View Article and Find Full Text PDF

Transcription factories are nuclear domains where gene transcription takes place although the molecular basis for their formation and maintenance are unknown. In this study, we explored how the properties of chromatin as a polymer may contribute to the structure of transcription factories. We found that transcriptional active chromatin contains modifications like histone H4 acetylated at Lysine 16 (H4K16ac).

View Article and Find Full Text PDF

Although genome-wide association studies (GWAS) have identified the existence of numerous population-based cancer susceptibility loci, mechanistic insights remain limited, particularly for intergenic polymorphisms. Here, we show that polymorphism at a remote intergenic region on chromosome 11q13.3, recently identified as a susceptibility locus for renal cell carcinoma, modulates the binding and function of hypoxia-inducible factor (HIF) at a previously unrecognized transcriptional enhancer of CCND1 (encoding cyclin D1) that is specific for renal cancers characterized by inactivation of the von Hippel-Lindau tumor suppressor (pVHL).

View Article and Find Full Text PDF