Nanocrystals are widely explored for a range of medical, imaging, sensing, and energy conversion applications. CdS nanocrystals have been reported as excellent photocatalysts, with thin film CdS also highly important in photovoltaic devices. To optimise properties of nanocrystals, control over phase, facet, and morphology are vital.
View Article and Find Full Text PDFAn analysis is presented of reflection from a marine sediment consisting of a homogeneous mud layer overlying a sand-mud basement, the latter with an upward-refracting, inverse-square sound speed profile. Such layering is representative of the sediment at the New England Mud Patch (NEMP). By applying appropriate integral transforms and their inverses to the Helmholtz equations for the ocean and the two sediment layers, along with the boundary conditions, a Sommerfeld-Weyl type of wavenumber integral is obtained for the cylindrical-wave reflection coefficient of the sediment, R.
View Article and Find Full Text PDFIn their Comment, the authors conclude that acoustic glint is not present in the reflection coefficient of a two-layer sediment in which the top layer is an Airy medium. They conclude, not that the original, inverse-square analysis of the glint is incorrect, but rather that the presence of glint is very sensitive to the detailed shape of the sound speed profile in the top layer.
View Article and Find Full Text PDFThe heart forms from the first and second heart fields, which contribute to distinct regions of the myocardium. This is supported by clonal analyses, which identify corresponding first and second cardiac cell lineages in the heart. Progenitor cells of the second heart field and its sub-domains are controlled by a gene regulatory network and signaling pathways, which determine their behavior.
View Article and Find Full Text PDFWaste heat is ubiquitous; as such, sustainable and long-lasting devices are required to convert it into more useful forms of energy that can make use of this abundant potential resource. Thermogalvanic cells (or thermocells) can use the thermoelectrochemical properties of redox couples to achieve this; entropy-driven redox reactions allow them to act as liquid thermoelectrics. However, excellent electrocatalysis at the electrode surface is required for optimum conversion efficiency.
View Article and Find Full Text PDFThis paper concerns the theory of acoustic reflection from a two-layered marine sediment, the upper layer of which consists of a fine-grained material (mud). The seawater above and basement below the layer are treated as homogeneous half-spaces. Within the mud layer, the density is taken to be constant, and three sound speed profiles are considered: uniform, linear, and inverse-square.
View Article and Find Full Text PDFI joined François Gros' laboratory as a postdoc at the end of 1971 and continued working with him as a research scientist until 1987, when I became an independent group leader at the Institut Pasteur. In the early 1970s, it was the beginning of research in his lab on muscle cell differentiation, as a model eukaryotic system for studying mRNAs and gene regulation. In this article, I recount our work on myogenesis and mention the other research themes in his lab and the people concerned.
View Article and Find Full Text PDFHigh entropy metal chalcogenides are materials containing five or more elements within a disordered sublattice. These materials exploit a high configurational entropy to stabilize their crystal structure and have recently become an area of significant interest for renewable energy applications such as electrocatalysis and thermoelectrics. Herein, we report the synthesis of bulk particulate HE zinc sulfide analogues containing four, five, and seven metals.
View Article and Find Full Text PDFHigh-entropy materials are a nascent class of materials that exploit a high configurational entropy to stabilize multiple elements in a single crystal lattice and to yield unique physical properties for applications in energy storage, catalysis, and thermoelectric energy conversion. Initially, the synthesis of these materials was conducted by approaches requiring high temperatures and long synthetic time scales. However, successful homogeneous mixing of elements at the atomic level within the lattice remains challenging, especially for the synthesis of nanomaterials.
View Article and Find Full Text PDFChem Commun (Camb)
October 2023
Herein we report for the first time the synthesis of a high entropy (CuZnCoInGa)S metal sulfide thin film deposited by AACVD using molecular precursors.
View Article and Find Full Text PDFHigh-entropy (HE) metal chalcogenides are a class of materials that have great potential in applications such as thermoelectrics and electrocatalysis. Layered 2D transition-metal dichalcogenides (TMDCs) are a sub-class of high entropy metal chalcogenides that have received little attention to date as their preparation currently involves complicated, energy-intensive, or hazardous synthetic steps. To address this, a low-temperature (500 °C) and rapid (1 h) single source precursor approach is successfully adopted to synthesize the hexernary high-entropy metal disulfide (MoWReMnCr)S .
View Article and Find Full Text PDFWe report a facile and low temperature synthesis of Ga- and In-doped CdS nanoparticles from molecular precursors. Diethyldithiocarbamate complexes of Cd(II), Ga(III), and In(III), were synthesised and decomposed in tandem through solventless thermolysis, producing Ga- or In-doped CdS. The resultant MCdS (where M = Ga/In at values of 0, 0.
View Article and Find Full Text PDFAn analysis of plane wave reflection is developed for a two-layer sediment, the top layer consisting of a fine-grained material (mud) with an upward refracting linear sound speed profile. Beneath is a homogeneous basement, and above is homogeneous seawater. A rather curious, exact analytical expression for the reflection coefficient is derived, involving easy to evaluate integrals over finite limits, of the modified Bessel functions of low-integer order.
View Article and Find Full Text PDFClient centered care (CCC) is strongly advocated for improving the quality of health care. The aim of the current study was to explore client and staff perspectives of a new model of CCC implemented in a residential alcohol and other drug (AOD) treatment service. Specifically, the study aimed to (i) describe the defining features of CCC, and (ii) describe the benefits and challenges of implementing CCC at the service.
View Article and Find Full Text PDFThe pursuit of rapid charging and high energy density in commercial lithium-ion batteries (LIBs) has been one of the priorities in battery research. Silicon-Carbon (Si-C), a possible substitute for graphite as an anode electrode material, is one prospect to achieving this goal. There is a debate as to whether nanoscale or the micron-scale silicon is more favourable as anode materials for LIBs.
View Article and Find Full Text PDFMetal oxides, sulphides, selenides and tellurides have routinely been investigated and utilised for a wide range of applications, in particular in the areas of energy (photovoltaic, thermoelectric) and catalysis (thermocatalysis, electrocatalysis and photoelectrocatalysis). A recent development in this chemical space is high entropy and entropy-stabilised inorganic materials, which took inspiration from preceding work on high entropy metal alloys (multicomponent alloys). High entropy inorganic materials typically have many (often ≥6) different cations or anions to yield a high configurational entropy, which can give unexpected structures and properties that are conducive to a broad range of applications in energy and catalysis.
View Article and Find Full Text PDFHarvesting wasted thermal energy could make important contributions to global energy sustainability. Thermogalvanic devices are simple, chemistry-based devices which can convert heat to electricity, through facile redox chemistry. The efficiency of this process is the ratio of electrical energy generated by the cell (in Watts) to the quantity of thermal energy that passes through the cell (also in Watts).
View Article and Find Full Text PDFAn analysis of the plane wave reflection coefficient of the seabed, R, is developed for two upward-refracting sediment sound speed profiles: the two-parameter linear and the three-parameter inverse-square, both extending to infinite depth. For the linear profile, it turns out that |R| = 1, representing total reflection for all grazing angles and all frequencies, signifying that in this special case, |R| is insensitive to the gradient. The implication is that if |R| is to return information about the shape of a profile, the gradient must change with depth, either smoothly through the presence of second- and/or higher-order depth derivatives or discontinuously at, say, an interface between sediment layers.
View Article and Find Full Text PDFCadmium sulfide (CdS) is an important semiconductor for electronic and photovoltaic applications, particularly when utilized as a thin film for window layers in CdTe solar cells. Deposition of thin-film CdS through the decomposition of single-source precursors is an attractive approach due to the facile, low-temperature, and rapid nature of this approach. Tailoring the precursor to affect the decomposition properties is commonly employed to tune desirable temperatures of decomposition.
View Article and Find Full Text PDFCopper antimony sulfide (Cu-Sb-S) has recently been proposed as an attractive alternative photovoltaic material due to the earth-abundant and non-toxic nature of the elements, high absorption coefficients and band gaps commensurate with efficient harvesting of solar photonic flux across multiple phases of Cu-Sb-S. These materials are therefore highly desirable and sustainable and scalable deposition techniques to produce them are of interest. In this paper, we demonstrate two facile, low-temperature and inexpensive techniques (solventless thermolysis and aerosol-assisted chemical vapor deposition (AACVD)) for the preparation of binary digenite (CuS), chalcocite (CuS) and stibnite (SbS) and several phases of ternary copper-antimony-sulfide (CuSbS, where 0 ≤ x ≤ 1).
View Article and Find Full Text PDF