Publications by authors named "Buck L H Taylor"

In the course of a total synthesis effort directed toward the natural product curcusone C, the Stoltz group discovered an unexpected thermal rearrangement of a divinylcyclopropane to the product of a formal Cope/1,3-sigmatropic shift sequence. Since the involvement of a thermally forbidden 1,3-shift seemed unlikely, theoretical studies involving two approaches, the "trial-and-error" testing of various conceivable mechanisms (Houk group) and an "automatic" approach using the Maeda-Morokuma AFIR method (Morokuma group) were applied to explore the mechanism. Eventually, both approaches converged on a cascade mechanism shown to have some partial literature precedent: Cope rearrangement/1,5-sigmatropic silyl shift/Claisen rearrangement/retro-Claisen rearrangement/1,5-sigmatropic silyl shift, comprising a quintet of five sequential thermally allowed pericyclic rearrangements.

View Article and Find Full Text PDF

Ni-catalyzed C(sp)-O bond activation provides a useful approach to synthesize enantioenriched products from readily available enantioenriched benzylic alcohol derivatives. The control of stereospecificity is key to the success of these transformations. To elucidate the reversed stereospecificity and chemoselectivity of Ni-catalyzed Kumada and cross-electrophile coupling reactions with benzylic ethers, a combined computational and experimental study is performed to reach a unified mechanistic understanding.

View Article and Find Full Text PDF

Nickel catalysts have shown unique ligand control of stereoselectivity in the Suzuki-Miyaura cross-coupling of boronates with benzylic pivalates and derivatives involving C(sp)-O cleavage. The SIMes ligand (1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) produces the stereochemically inverted C-C coupling product, while the tricyclohexylphosphine (PCy) ligand delivers the retained stereochemistry. We have explored the mechanism and origins of the ligand-controlled stereoselectivity with density functional theory (DFT) calculations.

View Article and Find Full Text PDF

A conformationally flexible template for the meta-C-H olefination of benzoic acids was designed through both experimental and computational efforts. The newly designed template favors a silver-palladium heterodimer low barrier transition state, and demonstrates that it is feasible to lengthen templates so as to achieve meta-selectivity when the distance between the functional handle of the native substrate and target C-H bond decreases. Analysis of the ortho-, meta-, and para-C-H cleavage transition states determined that the new template conformation optimizes the interaction between the nitrile and palladium-silver dimer in the meta-transition state, enabling palladium to cleave meta-C-H bonds with moderate-to-good yields and generally high regioselectivity.

View Article and Find Full Text PDF

Olefin metathesis reactions with 3E-1,3-dienes using Z-selective cyclometalated ruthenium benzylidene catalysts are described. In particular, a procedure for employing 3E-1,3-dienes in Z-selective homodimerization and cross-metathesis with terminal alkenes is detailed. The reaction takes advantage of the pronounced chemoselectivity of a recently reported ruthenium-based catalyst containing a cyclometalated NHC ligand for terminal alkenes in the presence of internal E-alkenes.

View Article and Find Full Text PDF

An asymmetric palladium-catalyzed conjugate addition reaction of arylboronic acids to enone substrates was investigated mechanistically. Desorption electrospray ionization coupled to mass spectrometry was used to identify intermediates of the catalytic cycle and delineate differences in substrate reactivity. Our findings provide evidence for the catalytic cycle proceeding through formation of an arylpalladium(II) cation, subsequent formation of an arylpalladium-enone complex, and, ultimately, formation of the new C-C bond.

View Article and Find Full Text PDF

We outline a strategy to enable non-directed Pd(II)-catalyzed C-H functionalization in the presence of Lewis basic heterocycles. In a high-throughput screen of two Pd-catalyzed C-H acetoxylation reactions, addition of a variety of -containing heterocycles is found to cause low product conversion. A pyridine-containing test substrate is selected as representative of heterocyclic scaffolds that are hypothesized to cause catalyst arrest.

View Article and Find Full Text PDF

Coupling with inversion: Chiral diarylmethanol derivatives undergo a stereospecific nickel-catalyzed cross-coupling reaction with aryl Grignard reagents (see scheme). The reaction proceeds with inversion of configuration and high enantiospecificity. The method has been applied to the asymmetric synthesis of a triarylmethane-based anti-cancer compound.

View Article and Find Full Text PDF

Deuterium-labeled alkylborane reagents 2a and 2b were prepared and subjected to cross-coupling reactions in the presence of a nickel catalyst. NMR analysis of the products indicates that transmetalation from boron to nickel proceeds with retention of configuration. These results demonstrate that alkylnickel intermediates are configurationally stable under Suzuki cross-coupling conditions.

View Article and Find Full Text PDF

Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols.

View Article and Find Full Text PDF