Membrane penetration by non-enveloped viruses is diverse and generally not well understood. Enteroviruses, one of the largest groups of non-enveloped viruses, cause diseases ranging from the common cold to life-threatening encephalitis. Enteroviruses enter cells by receptor-mediated endocytosis.
View Article and Find Full Text PDFThe family Iflaviridae includes economically important viruses of the western honeybee such as deformed wing virus, slow bee paralysis virus, and sacbrood virus. Iflaviruses have nonenveloped virions and capsids organized with icosahedral symmetry. The genome release of iflaviruses can be induced in vitro by exposure to acidic pH, implying that they enter cells by endocytosis.
View Article and Find Full Text PDFViruses from the genus Enterovirus are important human pathogens. Receptor binding or exposure to acidic pH in endosomes converts enterovirus particles to an activated state that is required for genome release. However, the mechanism of enterovirus uncoating is not well understood.
View Article and Find Full Text PDFEarly detection of cancer can significantly increase the survival chances of patients. Palpation is a traditional method in order to detect cancer; however, in minimally invasive surgery the surgeon is deprived of the sense of touch. We demonstrate how shearing elastography can recover elastic parameters and furthermore can be used to localize stiffness imhomogenities even if hidden underneath the surface.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2018
This paper demonstrates the usefulness of spectrally resolved digital holography for dual-wavelength optical metrology. Based on the large degree of phase information available, multiple de-correlated dual-wavelength phase maps can be generated, which, when averaged, result in a signal-to-noise-ratio improvement. Compared with single-wavelength averaging, no further post-processing of the reconstructed dual-wavelength phase map is required.
View Article and Find Full Text PDFThe ionization dynamics of pure He nanodroplets irradiated by Extreme ultraviolet radiation is studied using Velocity-Map Imaging PhotoElectron-PhotoIon COincidence spectroscopy. We present photoelectron energy spectra and angular distributions measured in coincidence with the most abundant ions He(+), He2(+), and He3(+). Surprisingly, below the autoionization threshold of He droplets, we find indications for multiple excitation and subsequent ionization of the droplets by a Penning-like process.
View Article and Find Full Text PDFHelium nanodroplets are widely used as a cold, weakly interacting matrix for spectroscopy of embedded species. In this work, we excite or ionize doped He droplets using synchrotron radiation and study the effect onto the dopant atoms depending on their location inside the droplets (rare gases) or outside at the droplet surface (alkali metals). Using photoelectron-photoion coincidence imaging spectroscopy at variable photon energies (20-25 eV), we compare the rates of charge-transfer to Penning ionization of the dopants in the two cases.
View Article and Find Full Text PDF