Publications by authors named "Buchs P"

Background: Increased awareness of the world's problematic growing health care expenditure and health care shortages requires sustainable use of available resources. To promote cultural changes in medical mindsets, societies representing medical specialties have developed new Choosing Wisely strategies. The Valais Medical Society and the Valais Pharmacy Association have developed an interprofessional collaboration project entitled "Less-is-more Together-PPI" to analyze and optimize change management practices focusing on the prescription and deprescription of proton pump inhibitors (PPIs).

View Article and Find Full Text PDF

Several morphological changes of synapses have been reported to be associated with the induction of long-term potentiation (LTP) in the CA1 hippocampus, including an transient increase in the proportion of synapses with perforated postsynaptic densities (PSDs) and a later occurrence of multiple spine boutons (MSBs) in which the two spines arise from the same dendrite. To investigate the functional significance of these modifications, we analyzed single sections and reconstructed 134 synapses labeled via activity using a calcium precipitation approach. Analyses of labeled spine profiles showed changes of the spine head area, PSD length, and proportion of spine profiles containing a coated vesicle that reflected variations in the relative proportion of different types of synapses.

View Article and Find Full Text PDF

High-frequency stimulation of excitatory synapses in many regions of the brain triggers a lasting increase in the efficacy of synaptic transmission referred to as long-term potentiation (LTP) and believed to contribute to learning and memory. One hypothesis proposed to account for the stability and properties of this functional plasticity is a structural remodeling of spine synapses. This possibility has recently received support from several studies.

View Article and Find Full Text PDF

We recently described a new procedure to grow nervous tissue as organotypic culture. The main feature of these slice cultures is to maintain a well preserved, three-dimensional organisation of the central nervous tissue. As these cultures can be kept for several weeks (up to three months), we have used this in vitro approach to study the complex interactions between host tissue and parasites during late stages of cerebral African trypanosomiasis.

View Article and Find Full Text PDF

Background: Propofol is a widely used anesthetic agent for adults and children. Although extensive clinical use has demonstrated its safety, neurologic dysfunctions have been described after the use of this agent. A recent study on a model of aggregating cell cultures reported that propofol might cause irreversible lesions of gamma-aminobutyric acid-mediated (GABAergic) neurons when administered at a critical phase of brain development.

View Article and Find Full Text PDF

Structural remodelling of synapses and formation of new synaptic contacts has been postulated as a possible mechanism underlying the late phase of long-term potentiation (LTP), a form of plasticity which is involved in learning and memory. Here we use electron microscopy to analyse the morphology of synapses activated by high-frequency stimulation and identified by accumulated calcium in dendritic spines. LTP induction resulted in a sequence of morphological changes consisting of a transient remodelling of the postsynaptic membrane followed by a marked increase in the proportion of axon terminals contacting two or more dendritic spines.

View Article and Find Full Text PDF

Long-term potentiation (LTP), an increase in synaptic efficacy believed to underlie learning and memory mechanisms, has been proposed to involve structural modifications of synapses. Precise identification of the morphological changes associated with LTP has however been hindered by the difficulty in distinguishing potentiated or activated from nonstimulated synapses. Here we used a cytochemical method that allowed detection in CA1 hippocampus at the electron microscopy level of a stimulation-specific, D-AP5-sensitive accumulation of calcium in postsynaptic spines and presynaptic terminals following application of high-frequency trains.

View Article and Find Full Text PDF

We have developed a new cytochemical method for the localization of calcium at the ultrastructural level in the central nervous system (CNS). The method is based on the use of phosphate buffer in the primary fixation followed by a mixture of a complex of chromium(III)-trisoxalate and osmium tetroxide (OsO4) which precipitates calcium and results in the formation of a high electron-dense reaction product. Calcium selectivity was verified by reactions made in test tube, by EGTA treatment of the tissue, by electron spectroscopic imaging (ESI) and electron energy loss spectroscopy (EELS).

View Article and Find Full Text PDF

By sectioning, using a razor blade, one- and three-week-old rat hippocampal organotypic cultures, we have tested the possibility that neurite outgrowth and reactive synaptogenesis would take place even after several weeks in culture in this in vitro model. At the light-microscopic level, recovery from the section and formation of a thin scar were observed within six days following the lesion. Immunostainings using neurofilament antibodies showed the presence of numerous degenerative and regenerative images one day after the cut and many fibres crossing the section six days after the lesion.

View Article and Find Full Text PDF

Using electrophysiological recordings of field potentials, we investigated the time course of synapse formation and maturation in organotypic cultures prepared from neonate animals of different ages. Following explanation, the size of the maximal synaptic responses elicited in area CA1 by stimulation of a small group of CA3 neurons increased progressively during the first three weeks in culture in a way that corresponded to the changes observed in synaptic contact density. Growth of synaptic responses was found to occur much more rapidly in cultures prepared from 8-day-old as compared with 2-day-old rats.

View Article and Find Full Text PDF

Using morphological techniques, we characterized the developmental reorganization that takes place during the first weeks after explanation in area CA1 of organotypic hippocampal cultures maintained at the interface between medium and a CO2-enriched atmosphere. Pyramidal neurones redistributed from a vertical into an horizontal cell layer in the middle of a three-dimensional culture, with apical dendrites running above the pyramidal layer. Glial cells redistributed into a thin layer at the bottom of the culture, forming an interface between tissue and culture medium.

View Article and Find Full Text PDF

Hippocampal slices prepared from 2-23-day-old neonates were maintained in culture at the interface between air and a culture medium. They were placed on a sterile, transparent and porous membrane and kept in petri dishes in an incubator. No plasma clot or roller drum were used.

View Article and Find Full Text PDF

Among the various molecular events that have been proposed to contribute to the mechanisms of long-term potentiation (LTP), one of the most cited possibilities has been the activation of protein kinase C (PKC). Here we review various aspects of the cellular actions of PKC activation and inhibition, with special emphasis on the effects of the kinase on synaptic transmission and the N-methyl-D-aspartate (NMDA) and non-NMDA receptor-mediated components of synaptic responses. We discuss the implications of these effects for interpretations of the role of PKC in the mechanisms of LTP induction and maintenance.

View Article and Find Full Text PDF

Long-term potentiation (LTP) in hippocampus has been proposed to result from a tonic activation of protein kinase C. This hypothesis predicts that stimulation of the kinase would produce a smaller change in response size on potentiated versus control pathways and, conversely, that inhibition of the kinase would reduce potentiated inputs to a greater degree than control responses. We tested these predictions using phorbol esters to activate and using the antagonist H-7 to inhibit protein kinase C; we found that the actions of these drugs on synaptic transmission were not affected by prior induction of LTP.

View Article and Find Full Text PDF

Arteether (6) has been prepared from dihydroquinghaosu (3) by etherification with ethanol in the presence of Lewis acid and separated from its chromatographically slower moving alpha-dihydroqinghaosu ethyl ether (7). The absolute stereochemistry at C-12 has been determined by 1H NMR data (J11,12, NOESY). Ethyl ethers 6 and 7 showed potent in vitro inhibition of Plasmodium falciparum, and both compounds were highly potent antimalarials in mice infected with a drug-sensitive strain of Plasmodium berghei.

View Article and Find Full Text PDF