NPJ Microgravity
February 2023
The next generation of space-based experiments will go hunting for answers to cosmology's key open questions which revolve around inflation, dark matter and dark energy. Low earth orbit and lunar missions within the European Space Agency's Human and Robotic Exploration programme can push our knowledge forward in all of these three fields. A radio interferometer on the Moon, a cold atom interferometer in low earth orbit and a gravitational wave interferometer on the Moon are highlighted as the most fruitful missions to plan and execute in the mid-term.
View Article and Find Full Text PDFPhysical theories that depend on many parameters or are tested against data from many different experiments pose unique challenges to statistical inference. Many models in particle physics, astrophysics and cosmology fall into one or both of these categories. These issues are often sidestepped with statistically unsound ad hoc methods, involving intersection of parameter intervals estimated by multiple experiments, and random or grid sampling of model parameters.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2022
We survey the prospective sensitivities of terrestrial and space-borne atom interferometers to gravitational waves generated by cosmological and astrophysical sources, and to ultralight dark matter. We discuss the backgrounds from gravitational gradient noise in terrestrial detectors, and also binary pulsar and asteroid backgrounds in space-borne detectors. We compare the sensitivities of LIGO and LISA with those of the 100 m and 1 km stages of the AION terrestrial AI project, as well as two options for the proposed AEDGE AI space mission with cold atom clouds either inside or outside the spacecraft, considering as possible sources the mergers of black holes and neutron stars, supernovae, phase transitions in the early Universe, cosmic strings and quantum fluctuations in the early Universe that could have generated primordial black holes.
View Article and Find Full Text PDFWe use MasterCode to perform a frequentist analysis of the constraints on a phenomenological MSSM model with 11 parameters, the pMSSM11, including constraints from /fb of LHC data at 13 TeV and PICO, XENON1T and PandaX-II searches for dark matter scattering, as well as previous accelerator and astrophysical measurements, presenting fits both with and without the constraint. The pMSSM11 is specified by the following parameters: 3 gaugino masses , a common mass for the first-and second-generation squarks and a distinct third-generation squark mass , a common mass for the first-and second-generation sleptons and a distinct third-generation slepton mass , a common trilinear mixing parameter , the Higgs mixing parameter , the pseudoscalar Higgs mass and . In the fit including , a Bino-like is preferred, whereas a Higgsino-like is mildly favoured when the constraint is dropped.
View Article and Find Full Text PDFWe perform a likelihood analysis of the minimal anomaly-mediated supersymmetry-breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that either a wino-like or a Higgsino-like neutralino LSP, [Formula: see text], may provide the cold dark matter (DM), both with similar likelihoods. The upper limit on the DM density from Planck and other experiments enforces [Formula: see text] after the inclusion of Sommerfeld enhancement in its annihilations.
View Article and Find Full Text PDFWe perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass [Formula: see text], distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), [Formula: see text] and [Formula: see text], and for the [Formula: see text] and [Formula: see text] Higgs representations [Formula: see text] and [Formula: see text], a universal trilinear soft SUSY-breaking parameter [Formula: see text], and the ratio of Higgs vevs [Formula: see text]. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + [Formula: see text] events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection.
View Article and Find Full Text PDFThe monojet search, looking for events involving missing transverse energy (E_{T}) plus one or two jets, is the most prominent collider dark matter search. We show that multijet searches, which look for E_{T} plus two or more jets, are significantly more sensitive than the monojet search for pseudoscalar- and scalar-mediated interactions. We demonstrate this in the context of a simplified model with a pseudoscalar interaction that explains the excess in GeV energy gamma rays observed by the Fermi Large Area Telescope.
View Article and Find Full Text PDFWe present a frequentist analysis of the parameter space of the pMSSM10, in which the following ten soft SUSY-breaking parameters are specified independently at the mean scalar top mass scale [Formula: see text]: the gaugino masses [Formula: see text], the first-and second-generation squark masses [Formula: see text], the third-generation squark mass [Formula: see text], a common slepton mass [Formula: see text] and a common trilinear mixing parameter , as well as the Higgs mixing parameter [Formula: see text], the pseudoscalar Higgs mass [Formula: see text] and [Formula: see text], the ratio of the two Higgs vacuum expectation values. We use the MultiNest sampling algorithm with [Formula: see text]1.2 [Formula: see text] points to sample the pMSSM10 parameter space.
View Article and Find Full Text PDFDifferent mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, [Formula: see text], assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau [Formula: see text], stop [Formula: see text] or chargino [Formula: see text], resonant annihilation via direct-channel heavy Higgs bosons / , the light Higgs boson or the boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10.
View Article and Find Full Text PDFWe discuss the potential impacts on the CMSSM of future LHC runs and possible [Formula: see text] and higher-energy proton-proton colliders, considering searches for supersymmetry via [Formula: see text] events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via [Formula: see text] searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2 variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters [Formula: see text] and [Formula: see text] of the CMSSM.
View Article and Find Full Text PDFWe make a frequentist analysis of the parameter space of the NUHM2, in which the soft supersymmetry (SUSY)-breaking contributions to the masses of the two Higgs multiplets, [Formula: see text], vary independently from the universal soft SUSY-breaking contributions [Formula: see text] to the masses of squarks and sleptons. Our analysis uses the MultiNest sampling algorithm with over [Formula: see text] points to sample the NUHM2 parameter space. It includes the ATLAS and CMS Higgs mass measurements as well as the ATLAS search for supersymmetric jets + [Formula: see text] signals using the full LHC Run 1 data, the measurements of [Formula: see text] by LHCb and CMS together with other B-physics observables, electroweak precision observables and the XENON100 and LUX searches for spin-independent dark-matter scattering.
View Article and Find Full Text PDFWe analyze the impact of data from the full Run 1 of the LHC at 7 and 8 TeV on the CMSSM with [Formula: see text] and [Formula: see text] and the NUHM1 with [Formula: see text], incorporating the constraints imposed by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment. We use the following results from the LHC experiments: ATLAS searches for events with [Formula: see text] accompanied by jets with the full 7 and 8 TeV data, the ATLAS and CMS measurements of the mass of the Higgs boson, the CMS searches for heavy neutral Higgs bosons and a combination of the LHCb and CMS measurements of [Formula: see text] and [Formula: see text]. Our results are based on samplings of the parameter spaces of the CMSSM for both [Formula: see text] and [Formula: see text] and of the NUHM1 for [Formula: see text] with 6.
View Article and Find Full Text PDFEur Phys J C Part Fields
March 2014
We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0.
View Article and Find Full Text PDFWe present a measurement of the partial branching fractions and mass spectra of the exclusive radiative penguin processes B-->Kpipigamma in the range m(Kpipi)<1.8 GeV/c(2). We reconstruct four final states: K(+)pi(-)pi(+)gamma, K(+)pi(-)pi(0)gamma, K(S)(0)pi(-)pi(+)gamma, and K(S)(0)pi(+)pi(0)gamma, where K(S)(0)-->pi(+)pi(-).
View Article and Find Full Text PDFWe present the results of a search for the decay B0-->tau+tau- in a data sample of (232+/-3)x10(6) Upsilon(4S)-->BB decays using the BABAR detector. Certain extensions of the standard model predict measurable levels of this otherwise rare decay. We reconstruct fully one neutral B meson and seek evidence for the signal decay in the rest of the event.
View Article and Find Full Text PDFWe report two novel determinations of /|Vub/ with reduced model dependence, based on measurements of the mass distribution of the hadronic system in semileptonic B decays. Events are selected by fully reconstructing the decay of one B meson and identifying a charged lepton from the decay of the other B meson from Upsilon(4S)-->BB events. In one approach, we combine the inclusive B-->Xulambdav rate, integrated up to a maximum hadronic mass mX<1.
View Article and Find Full Text PDFWe study the two-body decays of B+/- mesons to K+/- and a charmonium state X(cc) in a sample of 210.5 fb(-1) of data from the BABAR experiment. We perform measurements of absolute branching fractions beta(B+/- --> K+/-X(cc)) using a missing mass technique, and report several new or improved results.
View Article and Find Full Text PDFA search for the nonconservation of lepton flavor in the decay tau+/--->e+/-gamma has been performed with 2.07x10(8) e+e--->tau+tau- events collected by the BABAR detector at the SLAC PEP II storage ring at a center-of-mass energy near 10.58 GeV.
View Article and Find Full Text PDFUsing 226 x 10(6) gamma(4S) --> BB events collected with the BABAR detector at the PEP-II e+e- storage ring at the Stanford Linear Accelerator Center, we measure the branching fraction for B0 --> D0K+pi-, excluding B0 --> D*-K+, to be beta(B0 --> D0K+pi-) = (88 +/- 15 +/- 9) x 10(-6). We observe B0 --> D0K*(892)0 and B0 --> D2*(2460)-K+ contributions. The ratio of branching fractions beta(B0 --> D*-K+)/beta(B0 --> D*-pi+) = (7.
View Article and Find Full Text PDFWe present evidence for the b --> d penguin-dominated decays B+ --> K0K+ and B0 --> K0K0 in 227 x 10(6) Y(4S) --> BB decays collected with the BABAR detector. We measure the branching fractions B(B+ --> K0K+) = (1.5 +/- 0.
View Article and Find Full Text PDFA search for lepton-flavor and lepton-number violation in the decay of the tau lepton into one charged lepton and two charged hadrons is performed using 221.4 fb(-1) of data collected at an e+e- center-of-mass energy of 10.58 GeV with the BABAR detector at the SLAC PEP-II storage ring.
View Article and Find Full Text PDFWe present measurements of the branching fractions for the three-body decays B0 --> D(*)-/+K0pi+/- and their resonant submodes B0 --> D(*)-/+K*+/-using a sample of approximately 88 x 10(6) BB pairs collected by the BABAR detector at the SLAC PEP-II asymmetric energy storage ring. We measure: B(B0 --> D-/+K0pi+/-) = (4.9 +/- 0.
View Article and Find Full Text PDFWe present an updated measurement of time-dependent CP asymmetries and the CP-odd fraction in the decay B0-->D*+D*- using 232x10(6)BB pairs collected by the BABAR detector at the SLAC PEP-II B factory. We determine the CP-odd fraction to be 0.125+/-0.
View Article and Find Full Text PDFWe present updated measurements of the CP-violating parameters Spipi and Cpipi in B0-->pi+pi- decays. Using a sample of 227x10(6) Upsilon(4S)-->BB decays collected with the BABAR detector at the PEP-II asymmetric-energy e(+)e(-) collider at SLAC, we observe 467+/-33 signal decays and measure Spipi=-0.30+/-0.
View Article and Find Full Text PDFUsing 116.1 fb(-1) of data collected by the BABAR detector, we present an analysis of xi(c)(0) production in B decays and from the cc continuum, with the xi(c)(0) decaying into omega- K+ and xi- pi+ final states. We measure the ratio of branching fractions B(xi(c)(0) --> omega- K+)/B(xi(c)(0) --> xi- pi+) spectrum is measured on and 40 MeV below the upsilon(4S) resonance.
View Article and Find Full Text PDF