Publications by authors named "Buchachenko A"

Trapping and temperature-induced migration (TIM) of the first- and second-row atoms A from H to Ne in the face-centered cubic rare gas RG = Ar, Kr and Xe crystals are investigated within the classical crystal model parameterized by the empirically modified pairwise potentials. New coupled cluster A-RG potentials computed in a uniform way for all the atoms A are used to represent the atom-crystal interactions. Absolute and relative stabilities of the substitutional and interstitial trapping sites, their structures, interstitial migration pathways, related activation energies and rough estimates of the TIM rates are obtained.

View Article and Find Full Text PDF

The rate of a chemical reaction can be sensitive to the isotope composition of the reactants, which provides also for the sensitivity of such "spin-sensitive" reactions to the external magnetic field. Here we demonstrate the effect of the external magnetic field on the enzymatic DNA synthesis together with the effect of the spin-bearing magnesium ions ([Formula: see text]Mg). The rate of DNA synthesis monotonously decreased with the external magnetic field induction increasing in presence of zero-spin magnesium ions ([Formula: see text]Mg).

View Article and Find Full Text PDF

The electronic state chromatography (ESC) effect allows the differentiation of ions in their ground and metastable states by their gaseous mobilities in the limit of low electrostatic fields. It is investigated here by means of accurate transport calculations with ab initio ion-atom potentials for the Cr, Co, and Ni cations in He buffer gas near room temperature. The values for the open-shell ions in degenerate states are shown to be well approximated by using the single isotropic interaction potential.

View Article and Find Full Text PDF

Accommodation and migration of the ground-state (2s2pP) oxygen atom in the ideal Ar, Kr, and Xe rare gas crystals are investigated using the classical model. The model accounts for anisotropy of interaction between guest and host atoms, spin-orbit coupling, and lattice relaxation. Interstitial and substitutional accommodations are found to be the only thermodynamically stable sites for trapping atomic oxygen.

View Article and Find Full Text PDF

An extended combination rule is proposed to relate the dipole-dipole dispersion coefficient for the interaction of the like target species to the same coefficients for the interactions between the target and a set of partner species. The rule can be derived either by uniform discretization of the Casimir-Polder integral on a quadrature or by relating the dynamic dipole polarizabilities of the target species and the partner species. Both methods result in the same system of linear equations, whose solution also requires the knowledge of the dispersion coefficients for interaction between the partner species.

View Article and Find Full Text PDF

Optical spectroscopy constitutes the historical path to accumulate basic knowledge on the atom and its structure. Former work based on fluorescence and resonance ionization spectroscopy enabled identifying optical spectral lines up to element 102, nobelium. The new challenges faced in this research field are the refractory nature of the heavier elements and the decreasing production yields.

View Article and Find Full Text PDF

Zero-point energies (ZPEs) of hydroxyl ion and hydrogen and water molecules, free and compressed in C cages, are computed; the excess energy acquired by molecules under compression is in the range 2-3 kcal/mol and depends on the isotopes. The differences in ZPE of compressed isotopic molecules strongly exceed those of the free molecules, resulting in the large deuterium and tritium isotope effects. These effects induced by compression are suggested as a probe for testing molecular compression of enzymatic sites; they may be important for understanding enormously large isotope effects observed in some enzymatic reactions, where they are attributed to the tunneling.

View Article and Find Full Text PDF

The current status of gaseous transport studies of the singly-charged lanthanide and actinide ions is reviewed in light of potential applications to superheavy ions. The measurements and calculations for the mobility of lanthanide ions in He and Ar agree well, and they are remarkably sensitive to the electronic configuration of the ion, namely, whether the outer electronic shells are 6s, 5d6s or 6s. The previous theoretical work is extended here to ions of the actinide family with zero electron orbital momentum: Ac (7s, S), Am (5f7s S°), Cm (5f7s S°), No (5f7s S), and Lr (5f7s S).

View Article and Find Full Text PDF

The great diversity of molecular processes in chemistry, physics, and biology exhibits universal property: they are controlled by powerful factor, angular momentum. Conservation of angular momentum (electron spin) is a fundamental and universal principle: all molecular processes are spin selective, they are allowed only for those spin states of reactants whose total spin is identical to that of products. Magnetic catalysis induced by magnetic interactions is a powerful and universal means to overcome spin prohibition and to control physical, chemical and biochemical processes.

View Article and Find Full Text PDF
Article Synopsis
  • An amendment to the original paper has been published.
  • The amendment can be accessed through a link provided at the top of the paper.
  • Readers are encouraged to check the link for the updated information.
View Article and Find Full Text PDF

Static and dynamic polarizabilities of alkaline earth metal atoms Be-Ba and of the Yb atom, as well as dispersion coefficients and retardation functions for their long-range interactions, are used as a benchmark for the restricted coupled cluster method with singles and doubles (CCSD) and noniterative triples added [CCSD(T)] and related polarization propagator CCSD(3) methods at the complete basis set limit. The latter is attained through the sequence of the augmented correlation-consistent polarized weighted core valence n-zeta basis sets with the exact 2-component approximation for the scalar relativistic effects and with the small-core effective core potentials (for Ca, Sr, and Ba). At the converged level of core correlation treatment, the finite-field CCSD(T) method reproduces the best available data for the static dipole and quadrupole polarizabilities better than 1% and 4%, respectively.

View Article and Find Full Text PDF

Here, we report on the observation of a random to chaotic temperature transformation in the statistics of nearest-neighbor spacings of Fano-Feshbach resonances in the ultracold polarized gas of thulium-169 atoms. We associate this transformation to the appearance of so-called d resonances as well as the shift of other resonances with the temperature. In addition to this statistical change, it has been observed that the characters of s- and d-resonance temperature shifts are quite different: s resonances experience almost no shift or even negative shift with the temperature, while d resonances experience an obvious positive shift.

View Article and Find Full Text PDF

Several extensions to the Standard Model of particle physics, including light dark matter candidates and unification theories predict deviations from Newton's law of gravitation. For macroscopic distances, the inverse-square law of gravitation is well confirmed by astrophysical observations and laboratory experiments. At micrometer and shorter length scales, however, even the state-of-the-art constraints on deviations from gravitational interaction, whether provided by neutron scattering or precise measurements of forces between macroscopic bodies, are currently many orders of magnitude larger than gravity itself.

View Article and Find Full Text PDF

Closed-shell metal atoms in rare gas solids tend to occupy highly symmetric polyhedral crystal sites, as follows from the generic triplet Jahn-Teller splitting of the S → P excitation bands and complies with the isotropic nature of the dispersion forces. Atypical 2 + 1 Jahn-Teller splitting inherent to axially symmetric sites observed recently for Ba atoms has been therefore interpreted as the defect accommodation. By modeling the structure, stability, and spectra of the Ba atom in the face-centered cubic rare gas crystals, we identify thermodynamically stable crystal site of axial C symmetry that explains experimental observations.

View Article and Find Full Text PDF

A global optimization strategy is applied to Lennard-Jones models describing the stable trapping sites of a dimer in the face-centered cubic Ar-like lattice. Effective volumes of the trapping sites, quantified as the number of host atoms dislodged from the lattice, are mapped onto the parameter space defined by the strength and range of the dimer interaction potentials. The two models considered differ in the host-guest interaction and give very different maps that reflect the effect of local lattice relaxation.

View Article and Find Full Text PDF

Nuclear magnetic ions Mg, Ca, and Zn suppress DNA synthesis by 3-5 times with respect to ions with nonmagnetic nuclei. This observation unambiguously evidences that the DNA synthesis occurs by radical pair mechanism, which is well known in chemistry and implies pairwise generation of radicals by electron transfer between reaction partners. This mechanism coexists with generally accepted nucleophilic one; it is switched on, when at least two ions enter into the catalytic site.

View Article and Find Full Text PDF

The complexes of the Ba atom and Ba cation with the rare gas atoms Ar, Kr, and Xe in the states associated with the 6s → 5d, 6p excitations are investigated by means of the multireference configuration interaction techniques. Scalar relativistic potentials are obtained by the complete basis limit extrapolation through the sequence of aug-cc-pwCVnZ basis sets with the cardinal numbers n = Q, T, 5, combined with the suitable effective core potentials and benchmarked against the coupled cluster with singles, doubles, and non-iterative triples calculations and the literature data available for selected electronic states. Spin-orbit coupling is taken into account by means of the state-interacting multireference configuration interaction calculations performed for the Breit-Pauli spin-orbit Hamiltonian.

View Article and Find Full Text PDF

We present a joint experimental and theoretical study of spin dynamics of a single ^{88}Sr^{+} ion colliding with an ultracold cloud of Rb atoms in various hyperfine states. While spin exchange between the two species occurs after 9.1(6) Langevin collisions on average, spin relaxation of the Sr^{+} ion Zeeman qubit occurs after 48(7) Langevin collisions, which is significantly slower than in previously studied systems due to a small second-order spin-orbit coupling.

View Article and Find Full Text PDF

A highly accurate, consistent set of ab initio interaction potentials is obtained for the title systems at the coupled cluster with singles, doubles, and non-iterative triples level of theory with extrapolation to the complete basis set limit. These potentials are shown to be more reliable than the previous potentials based on their long-range behavior, equilibrium properties, collision cross sections, and transport properties.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how manganese atoms and dimers interact with solid noble gases (Ar, Kr, Xe) using a classical model that accounts for both local distortions and long-range crystal structure.
  • The research finds that manganese occupies stable single substitution and tetrahedral vacancy sites in Ar and Kr, but only single substitution sites in Xe; for dimers, stable configurations emerge from combinations of these sites.
  • Despite some limitations in accurately predicting vibrational frequencies and coupling constants, the findings correlate well with experimental spectroscopy results, aiding in understanding manganese behavior in these matrices.
View Article and Find Full Text PDF

Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions.

View Article and Find Full Text PDF

We present accurate ab initio and quantum scattering calculations on a prototypical hybrid ion-atom system Yb^{+}-Rb, recently suggested as a promising candidate for the experimental study of open quantum systems, quantum information processing, and quantum simulation. We identify the second-order spin-orbit (SO) interaction as the dominant source of hyperfine relaxation in cold Yb^{+}-Rb collisions. Our results are in good agreement with recent experimental observations [L.

View Article and Find Full Text PDF

Equilibrium structures, dissociation energies, and rovibrational energy levels of the electrostatic complexes formed by molecular hydrogen and first-row S-state transition metal cations Cr(+), Mn(+), Cu(+), and Zn(+) are investigated ab initio. Extensive testing of the CCSD(T)-based approaches for equilibrium structures provides an optimal scheme for the potential energy surface calculations. These surfaces are calculated in two dimensions by keeping the H-H internuclear distance fixed at its equilibrium value in the complex.

View Article and Find Full Text PDF