Inexpensive biomass materials hold great potential for the development of green delivery systems aimed at improving the extremely low utilization efficiency of pesticides. However, current systems face challenges in achieving both high encapsulation rates and drug loading capacities. This study introduces a novel method using chitosan (CS) and sodium lignosulfonate (SL) to co-assemble with avermectin (AVM), a widely used hydrophobic pesticide, forming AVM-CS-SL micro-nano capsules.
View Article and Find Full Text PDFIn the field of contemporary epidermal bioelectronics, there is a demand for energy supplies that are safe, lightweight, flexible and robust. In this work, double-network polymer hydrogels were synthesized by polymerization of 3,4-ethylenedioxythiophene (EDOT) into a poly(vinyl alcohol)/poly(ethylene glycol diacrylate) (PVA/PEGDA) double-network hydrogel matrix. The PEDOT-PVA/PEGDA double-network hydrogel shows both excellent mechanical and electrochemical performance, having a strain up to 498%, electrical conductivity as high as 5 S m and specific capacitance of 84.
View Article and Find Full Text PDFAppl Biochem Biotechnol
October 2024
Lignin peroxidase (LiP) has a good application prospect in lignin degradation, environmental treatment, straw feed, and other industries. However, its application is constrained by the high price and low stability of enzyme preparation. In this study, the Escherichia coli-Bacillus subtilis (E.
View Article and Find Full Text PDFWater plays a very important role in the growth of tomato ( L.), and how to detect the water status of tomato is the key to precise irrigation. The objective of this study is to detect the water status of tomato by fusing RGB, NIR and depth image information through deep learning.
View Article and Find Full Text PDFThe ongoing global pandemic of COVID-19 has devastatingly influenced the environment, society, and economy around the world. Numerous medical resources are used to inhibit the infectious transmission of the virus, resulting in massive medical waste. This study proposes a sustainable and environment-friendly method to convert hazardous medical waste into valuable fuel products through pyrolysis.
View Article and Find Full Text PDFObjectives: Maximizing the utility value of enzymes was achieved by exploring the effects of small molecules on the efficiency of lignin degradation by lignin peroxidase.
Methods: Using wheat straw as raw material and taking lignin degradation rate as index, it was found that laccase, glucose oxidase, malonic acid, citric acid, ZnSO, CaCl could promote the lignin degradation by the lignin peroxidase from Irpex lacteus, respectively. Moreover, glucose oxidase, malonic acid and CaCl had obvious synergy effects on lignin degradation by the lignin peroxidase.
Tungstophosphoric acid (TPA) encapsulated dendritic fibrous silica KCC-1 was prepared via a microemulsion system with the simple reflux method using cetyltrimethylammonium bromide as a structure-directing agent. The TPA impregnated on KCC-1 (ITPA-KCC-1) was also prepared for comparative. Various physicochemical techniques were used to characterize the synthesized materials and their activity evaluated in the 5-hydroxymethylfurfural (HMF) formation from carbohydrates derivatives of fructose, glucose and cellulose.
View Article and Find Full Text PDFThis study aims to investigate the effect of microwave torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from microwave co-pyrolysis of cellulose and low density polyethylene (LDPE). FTIR analysis displayed remarkable reductions of active hydroxyl and ether groups in microwave torrefied cellulose (MTC), demonstrating that cellulose was less stable than MTC. GC/MS analysis indicated that the hydrocarbons content was ranged from 18.
View Article and Find Full Text PDFItaconic acid (IA) production by fermentation of undetoxified hydrolysate of bamboo residues by Aspergillus terreus was demonstrated. Monosaccharides were obtained by pretreatment and enzymatic hydrolysis of bamboo residues. A.
View Article and Find Full Text PDFBiochar has attracted wide interest due to its important role in the synthesis of functionalized carbon materials. Molten alkali carbonates (MC) pyrolysis as a novel mean was explored to obtain superior bamboo biochar compared with alkali impregnation pretreating bamboo powder associated with pyrolysis. The properties of biochar produced by MC pyrolysis were enhanced, suggesting an increase in BET surface area of 43.
View Article and Find Full Text PDFThis study aims to enhance the quality of biofuel through microwave torrefaction pretreatment for lignin. Low density polyethylene (LDPE) was added as a hydrogen source during microwave co-pyrolysis along with the microwave-torrefied lignin (MTL). The thermal degradation behavior and kinetic study of MTL co-pyrolysis with LDPE by microwave-assisted heating was investigated as well.
View Article and Find Full Text PDFThis work proposed an integrated process based on alkali-sulfite (AlkSul) pretreatment to coproduce fermentable sugars and lignin adsorbents from hardwood. Different from conventional liquid hot water (LHW) pretreatment, this pretreatment improved cellulose accessibility through selective lignin removal and modification, resulting in significantly enhanced biomass saccharification. Over 75% of the original cellulose and hemicellulose was released and could be recovered as fermentable sugars after pretreatment and subsequent enzymatic hydrolysis.
View Article and Find Full Text PDFConverting lignin into value-added products in current lignocellulosic biorefineries has been challenging, which in turn restricts the commercialization of many lignocellulosic biorefineries. In this work, a two-stage alkali-oxygen assisted liquid hot water pretreatment (AlkOx) was proposed as the first step of biorefinery. This alkali-oxygen pretreatment facilitated biomass fractionation by solubilizing majority of lignin in water-soluble fraction, while remaining most of cellulose and hemicellulose in water-insoluble fraction.
View Article and Find Full Text PDFThe thermal behavior and kinetic study of lignocellulosic biomass (rice straw (RS)) and linear low-density polyethylene (LLDPE) pyrolysis over modified ZSM-5 catalyst were investigated using thermo-gravimetric analysis (TGA). Cellulose and lignin were used as model compounds of biomass in order to investigate the reaction mechanism of lignocellulosic biomass and polyethylene co-pyrolysis. Results showed that RS&LLDPE co-pyrolysis was more complicated than that of the individual components.
View Article and Find Full Text PDFIn this study, the thermal decomposition behavior and kinetics of pyrolysis and catalytic pyrolysis of Douglas fir (DF) were investigated using thermogravimetric (TG) analysis. It was found that the heating rate was an important factor during the biomass pyrolysis process, it affected the pyrolysis though heat transfer and mass transfer through the biomass particles. The differential thermogravimetric (DTG) curves demonstrated that the role of the catalyst was to slightly reduce the temperature of biomass thermal degradation.
View Article and Find Full Text PDFBiogas production has been the focus of many individuals in the developing world; there have been several investigations that focus on improving the production process and product quality. In the developing world the lack of advanced technology and capital has hindered the development of energy production. Renewable energy has the potential to improve the standard of living for most of the 196 countries which are classified as developing economies.
View Article and Find Full Text PDFLignocellulosic biomass is an abundant renewable resource and can be efficiently converted into bio-energy by a bio-refinery. From the various techniques available for biomass thermo-chemical conversion; microwave assisted pyrolysis (MAP) seems to be the very promising. The principles of microwave technology were reviewed and the parameters for the efficient production of bio-oil using microwave technology were summarized.
View Article and Find Full Text PDFThe aim of this study is to explore catalytic microwave pyrolysis of lignin for renewable phenols and fuels using activated carbon (AC) as a catalyst. A central composite experimental design (CCD) was used to optimize the reaction condition. The effects of reaction temperature and weight hourly space velocity (WHSV, h(-1)) on product yields were investigated.
View Article and Find Full Text PDFThe effects of different activated carbon (AC) catalysts based on various carbon sources on products yield and chemical compositions of upgraded pyrolysis oils were investigated using microwave pyrolysis of Douglas fir sawdust pellets. Results showed that high amounts of phenols were obtained (74.61% and 74.
View Article and Find Full Text PDFBioresour Technol
November 2012
Catalytic hydrodeoxygenation (HDO) of lignin-derived phenols which are the lowest reactive chemical compounds in biomass pyrolysis oils has been reviewed. The hydrodeoxygenation (HDO) catalysts have been discussed including traditional HDO catalysts such as CoMo/Al(2)O(3) and NiMo/Al(2)O(3) catalysts and transition metal catalysts (noble metals). The mechanism of HDO of lignin-derived phenols was analyzed on the basis of different model compounds.
View Article and Find Full Text PDFMicrowave pyrolysis of torrefied Douglas fir sawdust pellet was investigated to determine the effects of torrefaction on the biofuel production. Compared to the pyrolysis of raw biomass, the increased concentrations of phenols and sugars and reduced concentrations of guaiacols and furans were obtained from pyrolysis of torrefied biomass, indicating that torrefaction as a pretreatment favored the phenols and sugars production. Additionally, about 3.
View Article and Find Full Text PDFCatalytic microwave pyrolysis of biomass using activated carbon (AC) was investigated to determine the effects of pyrolytic conditions on the yields of phenol and phenolics. Bio-oils with high concentrations of phenol (38.9%) and phenolics (66.
View Article and Find Full Text PDFCatalytic microwave pyrolysis of biomass using activated carbon was investigated to determine the effects of pyrolytic conditions on the yields of phenol and phenolics. The high concentrations of phenol (38.9%) and phenolics (66.
View Article and Find Full Text PDFMicrowave pyrolysis of distillers dried grain with solubles (DDGS) was investigated to determine the effects of pyrolytic conditions on the yields of bio-oil, syngas, and biochar. Pyrolysis process variables included reaction temperature, time, and power input. Microwave pyrolysis of DDGS was analyzed using response surface methodology to find out the effect of process variables on the biofuel (bio-oil and syngas) conversion yield and establish prediction models.
View Article and Find Full Text PDF