Objective: Amid the public health controversy surrounding American football, a helmet that can reduce linear and rotational acceleration has the potential to decrease forces transmitted to the brain. The authors hypothesized that a football helmet with an outer shell would reduce both linear and rotational acceleration. The authors' objectives were to 1) determine an optimal material for a shock-absorbing outer shell and 2) examine the ability of an outer shell to reduce linear and/or rotational acceleration.
View Article and Find Full Text PDFObjective: While epilepsy studies rarely examine brainstem, we sought to examine the hypothesis that temporal lobe epilepsy (TLE) leads to subcortical arousal center dysfunction, contributing to neocortical connectivity and neurocognitive disturbances.
Methods: In this case-control study of 26 adult patients with TLE and 26 controls, we used MRI to measure structural and functional connectivity of the cuneiform/subcuneiform nuclei (CSC), pedunculopontine nucleus, and ventral tegmental area. Ascending reticular activating system connectivity patterns were related to neuropsychological and disease measures.
There are concerns about the effects of subconcussive head impacts in sport, but the effects of subconcussion on brain connectivity are not well understood. We hypothesized that college football players experience changes in brain functional connectivity not found in athletes competing in lower impact sports or healthy controls. These changes may be spatially heterogeneous across participants, requiring analysis methods that go beyond mass-univariate approaches commonly used in functional MRI (fMRI).
View Article and Find Full Text PDFBackground: The effects of head impact in sports are of growing interest for clinicians, scientists, and athletes. Soccer is the most popular sport worldwide, but the burden of head impact in collegiate soccer is still unknown.
Purpose: To quantify head impact associated with practicing and playing collegiate soccer using wearable accelerometers.
As concerns about head impact in American football have grown, similar concerns have started to extend to other sports thought to experience less head impact, such as soccer and lacrosse. However, the amount of head impact experienced in soccer and lacrosse is relatively unknown, particularly compared with the substantial amount of data from football. This pilot study quantifies and compares head impact from four different types of sports teams: college football, high school football, college soccer, and college lacrosse.
View Article and Find Full Text PDFBackground: Concussion and repetitive head impact in sports has increased interest and concern for clinicians, scientists, and athletes. Lacrosse is the fastest growing sport in the United States, but the burden of head impact in lacrosse is unknown.
Purpose: The goal of this pilot study was to quantify head impact associated with practicing and playing collegiate lacrosse while subjects were fitted with wearable accelerometers.
Unlabelled: OBJECT IVE: This study directly compares the number and severity of subconcussive head impacts sustained during helmet-only practices, shell practices, full-pad practices, and competitive games in a National Collegiate Athletic Association (NCAA) Division I-A football team. The goal of the study was to determine whether subconcussive head impact in collegiate athletes varies with practice type, which is currently unregulated by the NCAA.
Methods: Over an entire season, a cohort of 20 collegiate football players wore impact-sensing mastoid patches that measured the linear and rotational acceleration of all head impacts during a total of 890 athletic exposures.