Despite numerous advances in spectroscopic methods through the latter part of the 20th century, the unequivocal structure determination of natural products can remain challenging, and inevitably, incorrect structures appear in the literature. Computational methods that allow the accurate prediction of NMR chemical shifts have emerged as a powerful addition to the toolbox of methods available for the structure determination of small organic molecules. Herein, we report the structure determination of a small, stereochemically rich natural product from Laurencia majuscula using the powerful combination of computational methods and total synthesis, along with the structure confirmation of notoryne, using the same approach.
View Article and Find Full Text PDFThe originally assigned stereostructures of laurefurenynes A and B have been reassigned on the basis of DFT calculations of NMR chemical shifts, synthesis of model compounds and total synthesis of laurefurenyne B, demonstrating the power of this combined approach for stereostructure elucidation/confirmation.
View Article and Find Full Text PDFElatenyne is a small dibrominated natural product first isolated from Laurencia elata. The structure of elatenyne was originally assigned as a pyrano[3,2-b]pyran on the basis of NMR methods. Total synthesis of the originally proposed pyrano[3,2-b]pyran structure of elatenyne led to the gross structure of the natural product being reassigned as a 2,2'-bifuranyl.
View Article and Find Full Text PDFWe describe the synthesis of a series of oxy-substituted butenolide spiroacetals and spiro-N,O-acetals by oxidative spirocyclisation of 2-[(4-hydroxy or 4-sulfonamido)butyl]furans. The axial-equatorial preference of each oxy-substituent is investigated (NMR) by an acid-catalysed thermodynamic relay of configuration between the spiro- and oxy-centres. The axial site is preferred for most oxy-substituents at synthetically useful levels.
View Article and Find Full Text PDF