Recently, it has been reported that 5-HT2 receptor agonists effectively reduce intraocular pressure (IOP) in a nonhuman primate model of glaucoma. Although 1-[(2S)-2-aminopropyl]indazol-6-ol (AL-34662) was shown to have good efficacy in this nonhuman primate model of ocular hypertension as well as a desirable physicochemical and permeability profile, subsequently identified cardiovascular side effects in multiple species precluded further clinical evaluation of this compound. Herein, we report selected structural modifications that resulted in the identification of (8R)-1-[(2S)-2-aminopropyl]-8,9-dihydro-7H-pyrano[2,3-g]indazol-8-ol (13), which displayed an acceptable profile to support advancement for further preclinical evaluation as a candidate for proof-of-concept studies in humans.
View Article and Find Full Text PDFA series of 2,3,6-pyrazine Rho Kinase inhibitors were optimized for in vivo activity for topical ocular dosing. Modifications of the 2-(piperazin-1-yl)pyrazine derivatives produced compounds with improved solubility and physicochemical properties. Modifications of the 6-pyrazine substituent led to improvements in in vitro potency.
View Article and Find Full Text PDFA novel series of 15-fluoro prostaglandins with phenoxy termination of the omega-chain was synthesized and evaluated for binding and functional activation of the prostaglandin FP receptor in vitro and for side effect potential and topical ocular hypotensive efficacy in vivo. Compounds with the 15alpha-fluoride relative stereochemistry displayed EC50 values of
A series of prostaglandin DP agonists containing a 3-oxa-15-cyclohexyl motif was synthesized and evaluated in several in vitro and in vivo biological assays. The reference compound ZK 118.182 (9beta-chloro-15-cyclohexyl-3-oxa-omega-pentanor PGF(2alpha)) is a potent full agonist at the prostaglandin DP receptor.
View Article and Find Full Text PDF