Publications by authors named "Brynn Hibbert"

Ethanol is a prohibited substance in professional animal racing as its administration causes physiological effects such as depression of the central nervous system. Regulation of potential doping agents, including those that inhibit performance, is critical to ensure integrity and animal welfare in greyhound racing, but the detection of ethanol is complicated by dietary and/or environmental exposure. In response, a reliable analytical method capable of detecting recent ethanol administration in greyhound urine samples was validated and implemented.

View Article and Find Full Text PDF

The International Union of Pure and Applied Chemistry (IUPAC) has a long tradition of supporting the compilation of chemical data and their evaluation through direct projects, nomenclature and terminology work, and partnerships with international scientific bodies, government agencies and other organizations. The IUPAC Interdivisional Subcommittee on Critical Evaluation of Data (ISCED) has been established to provide guidance on issues related to the evaluation of chemical data. In this first report we define the general principles of the evaluation of scientific data and describe best practices and approaches to data evaluation in chemistry.

View Article and Find Full Text PDF

Plasmonic nanoparticles are finding applications within the single molecule sensing field in a "dimer" format, where interaction of the target with hairpin DNA causes a decrease in the interparticle distance, leading to a localized surface plasmon resonance shift. While this shift may be detected using spectroscopy, achieving statistical relevance requires the measurement of thousands of nanoparticle dimers and the timescales required for spectroscopic analysis are incompatible with point-of-care devices. However, using dark-field imaging of the dimer structures, simultaneous digital analysis of the plasmonic resonance shift after target interaction of thousands of dimer structures may be achieved in minutes.

View Article and Find Full Text PDF

A case study of ordinal data from human organoleptic examination (sensory analysis) of drinking water obtained in an interlaboratory comparison of 49 ecological laboratories is described. The recently developed two-way ordinal analysis of variation (ORDANOVA) is applied for the first time for the treatment of responses on the intensity of chlorine and sulfurous odor of water at 20 and 60 °C, which is classified into the six categories from 'imperceptible' to 'very strong'. The one-way ORDANOVA is used for the analysis of the 'salty taste' intensity of the water.

View Article and Find Full Text PDF

This study describes a multivariate statistical model (derived using partial least squares regression, PLS-R) that derives charring intensity (reaction temperature and duration) from the attenuated total reflectance (ATR) Fourier Transform Infrared (FTIR) spectra of charcoal. Data for the model was obtained from a library of charcoal samples produced under laboratory conditions at charring intensities (CI) relevant to wildfires and a series of feedstocks representing common tree species collected from Australia. The PLS-R model developed reveals the potential of FTIR to determine the charring intensity of charcoal.

View Article and Find Full Text PDF

Current paleontological techniques to separate vertebrate fossils from encasing iron-rich cements by chemical means are limited by the low solubility of common iron(III) hydroxide oxides such as hematite and goethite. This study examines novel geochemical extractions capable of selectively dissolving iron(III) hydroxide oxides, in aqueous solutions of pH 9-11, without damaging fossilised bones or teeth (hydroxidecarbonate-apatite). This involves the siderophore ligands pyridoxal isonicotinoyl hydrazone (PIH), salicylaldehyde isonicotinoyl hydrazone (SIH), and acetohydroxamic acid (aHA), whose coordination complexes with iron(III) show exceptionally high formation stability constants.

View Article and Find Full Text PDF

Total risk (probability) of a false decision on conformity of an alloy due to measurement uncertainty and correlation of test results is quantified. As an example, a dataset of test results of a PtRh alloy is studied when contents of four components of the alloy composition are under control. There are specification limits for contents of 1) Pt and 2) Rh; 3) three precious impurities - Au, Ir and Pd, and 4) eight impurities, both precious Au, Ir, Pd, and non-precious Fe, Pb, Si, Sn, Zn.

View Article and Find Full Text PDF

The integration of plasmonic nanoparticles into biosensors has the potential to increase the sensitivity and dynamic range of detection, through the use of single nanoparticle assays. The analysis of the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles has allowed the limit of detection of biosensors to move towards single molecules. However, due to complex equipment or slow analysis times, these technologies have not been implemented for point-of-care detection.

View Article and Find Full Text PDF

Risks of false decisions in conformity assessment of an environmental compartment due to measurement uncertainty of concentrations of two or more pollutants are discussed. Even if the assessment of conformity for each pollutant in the compartment is successful, the total probability of a false decision concerning the compartment as a whole might still be significant. A model of the total probability of a false decision, formulated on the base of the law of total probability, is used, for example, for a study of test results of total suspended particulate matter (TSPM) concentration in ambient air near to three independent stone quarries located in Israel, as the sources of the air pollution.

View Article and Find Full Text PDF

A new design for a membrane-free gas sensor modified with a thin layer of ionic liquid is described. The new approach uses miniaturized interdigitated microelectrodes for detecting gases having reversible electrochemistry, for example, dioxygen. Analyte molecules are reduced on the first working electrode, creating an intermediate species (e.

View Article and Find Full Text PDF

Electrochemical DNA biosensors composed of a redox marker modified nucleic acid probe tethered to a solid electrode is a common experimental construct for detecting DNA and RNA targets, proteins, inorganic ions, and even small molecules. This class of biosensors generally relies on the binding-induced conformational changes in the distance of the redox marker relative to the electrode surface such that the charge transfer is altered. The conventional design is to attach the redox species to the distal end of a surface-bound nucleic acid strand.

View Article and Find Full Text PDF

Ionic liquids (IL) have been regarded as promising electrolytes as substitutes for volatile aqueous or organic solvents for electrochemical gas sensors. However, ILs are viscous, and the slow diffusion of gas molecules leads to poor sensitivity and sluggish response times. Herein, we describe a strategy using an array of microstrips of IL containing magnetic nanoparticles as nanostirrers for enhanced mass transport and gas sensing.

View Article and Find Full Text PDF

The probability of a false decision on conformity of a multicomponent material due to measurement uncertainty is discussed when test results are correlated. Specification limits of the components' content of such a material generate a multivariate specification interval/domain. When true values of components' content and corresponding test results are modelled by multivariate distributions (e.

View Article and Find Full Text PDF

Risk of a false decision on conformity of a multicomponent material or object due to measurement uncertainty is discussed. Even if conformity assessment for each component of a material sample is successful, the total probability of a false decision (total consumer's risk or producer's risk) concerning the sample as a whole might still be significant. A model of the total probability of such false decisions is formulated based on the law (theorem) of total probability.

View Article and Find Full Text PDF

Data analysis is central to understanding phenomena in host-guest chemistry. We describe here recent developments in this field starting with the revelation that the popular Job plot method is inappropriate for most problems in host-guest chemistry and that the focus should instead be on systematically fitting data and testing all reasonable binding models. We then discuss approaches for estimating uncertainties in binding studies using case studies and simulations to highlight key issues.

View Article and Find Full Text PDF

Pt is usually not considered as an efficient catalyst for water oxidation. Here, we report a design-of-experiment approach for modelling the roughness of an electrochemically roughened Pt electrode for water oxidation. The results indicate significant interaction between oxidation and reduction potentials on surface roughness and the porous Pt exhibits greatly improved catalytic activity for oxygen evolution in acid which is comparable to the benchmark catalyst RuO₂.

View Article and Find Full Text PDF

The influence of RNA versus DNA on the performance of electrochemical biosensors where redox-labelled nucleic acid duplexes bend towards the electrode surface has been assessed. Faster electron transfer was observed for duplexes containing RNA, suggesting duplexes with RNA are more flexible. These data are of particular importance for microRNA biosensors.

View Article and Find Full Text PDF

Electronic Laboratory Notebooks (ELNs) are progressively replacing traditional paper books in both commercial research establishments and academic institutions. University researchers require specific features from ELNs, given the need to promote cross-institutional collaborative working, to enable the sharing of procedures and results, and to facilitate publication. The LabTrove ELN, which we use as our exemplar, was designed to be researcher-centric (, not only aimed at the individual researcher's basic needs rather than to a specific institutional or subject or disciplinary agenda, but also able to be tailored because it is open source).

View Article and Find Full Text PDF

Platinum electrodes have been electrochemically roughened (roughness factors up to 430) and evaluated for use as neural stimulation electrodes. The roughened electrodes show superior interfacial properties with increasing surface roughness. The roughened electrode (fR = 250) has a charge injection limit of 1.

View Article and Find Full Text PDF

Rationale: Mass spectrometric identification of compounds in chromatography can be obtained from molecular masses from soft ionization mass spectrometry techniques such as field ionization (FI) and fragmentation patterns from hard ionization techniques such as electron ionization (EI). Simultaneous detection by EI and FI mass spectrometry allows alignment of the different information from each method.

Methods: We report the construction and characteristics of a combined instrument consisting of a gas chromatograph and two parallel mass spectrometry ionization sources, EI and FI.

View Article and Find Full Text PDF

Horse racing authorities impose a limit on the concentration of plasma 'total carbon dioxide' (TCO2), typically 36 mM with action taken above 37 mM, as measured by an electrochemical gas analyzer. It is of interest to understand the distribution of TCO2 in a 'normal' population of racehorses and determine probabilities of members of this population exceeding these current regulatory and action limits. TCO2 levels in equine plasma samples have been modelled for 12 months (2011-2012) of thoroughbred (3076 measurements) and standardbred (3788 measurements) data in Australia.

View Article and Find Full Text PDF

We report a systematic study of the effects of types and positions of amino acid residues of tripeptides on the formation constants logβ, acid dissociation constants pKa, and the copper coordination modes of the copper(II) complexes with 27 tripeptides formed from the amino acids glutamic acid, glycine, and histidine. logβ values were calculated from pH titrations with l mmol L(-1):1 mmol L(-1) solutions of the metal and ligand and previously reported ligand pKa values. Generalized multiplicative analysis of variance (GEMANOVA) was used to model the logβ values of the saturated, most protonated, monoprotonated, logβ(CuL) - logβ(HL), and pKa of the amide group.

View Article and Find Full Text PDF

The illicit drug methylamphetamine is often prepared from the precursor ephedrine or pseudoephedrine, which in turn are obtained by three processes: extraction from the Ephedra plant ("natural"), via fermentation of sugars ("semi-synthetic"), and by a "fully synthetic" route from propiophenone. We report the first method to differentiate between the three industrial routes used to produce the precursors ephedrine and pseudoephedrine by measurement of stable isotope ratios of nitrogen (δ(15)N), hydrogen (δ(2)H), and carbon (δ(13)C). Analysis of 782 samples of seized methylamphetamine allowed classification into three groups using k-means clustering or the expectation-maximization algorithm applied to a Gaussian mixture model.

View Article and Find Full Text PDF

A removable protecting group has been identified that allows the products of widely-used cross dehydrogenative couplings to be synthetically elaborated. The method can be used with enantiopure amines with no loss of enantiomeric excess. The methodology is exemplified by a new synthesis of enantiopure praziquantel, the drug used in the treatment of millions of people suffering from the neglected tropical disease, schistosomiasis.

View Article and Find Full Text PDF