Purpose: Radiofrequency (RF) exposure during MR examination is limited by IEC 60601-2-33 to prevent thermal hazards to patients. These limits are also the basis to derive the maximum induced field for the demonstration of MR safety of implants per ISO/TS 10974 (2018). One limit is the head-averaged specific absorption rate (SAR), for which the head extent is defined differently by MR and implant vendors.
View Article and Find Full Text PDFEpidural electrical stimulation (EES) targeting the dorsal roots of lumbosacral segments restores walking in people with spinal cord injury (SCI). However, EES is delivered with multielectrode paddle leads that were originally designed to target the dorsal column of the spinal cord. Here, we hypothesized that an arrangement of electrodes targeting the ensemble of dorsal roots involved in leg and trunk movements would result in superior efficacy, restoring more diverse motor activities after the most severe SCI.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Detailed computational anatomical models of the entire head are needed for accurate in silico modeling in a variety of transcranial stimulation applications. Models from different subjects help to understand and account for population variability. To this end, we have developed a new library of head models of 20 individuals, segmented from co-aligned multi-modal medical image data.
View Article and Find Full Text PDFThe Virtual Population (ViP) phantoms have been used in many dosimetry studies, yet, to date, anatomical phantom uncertainty in radiofrequency (RF) research has largely been neglected. The objective of this study is to gain insight, for the first time, regarding the uncertainty in RF-induced fields during magnetic resonance imaging associated with tissue assignment and segmentation quality and consistency in anatomical phantoms by evaluating the differences between two generations of ViP phantoms, ViP1.x and ViP3.
View Article and Find Full Text PDFIEEE Trans Radiat Plasma Med Sci
January 2019
Over the past decades, significant improvements have been made in the field of computational human phantoms (CHPs) and their applications in biomedical engineering. Their sophistication has dramatically increased. The very first CHPs were composed of simple geometric volumes, e.
View Article and Find Full Text PDFThe advent of detailed computational anatomical models has opened new avenues for computational life sciences (CLS). To date, static models representing the anatomical environment have been used in many applications but are insufficient when the dynamics of the body prevents separation of anatomical geometrical variability from physics and physiology. Obvious examples include the assessment of thermal risks in magnetic resonance imaging and planning for radiofrequency and acoustic cancer treatment, where posture and physiology-related changes in shape (e.
View Article and Find Full Text PDFComputational modeling and simulations are increasingly being used to complement experimental testing for analysis of safety and efficacy of medical devices. Multiple voxel- and surface-based whole- and partial-body models have been proposed in the literature, typically with spatial resolution in the range of 1-2 mm and with 10-50 different tissue types resolved. We have developed a multimodal imaging-based detailed anatomical model of the human head and neck, named "MIDA".
View Article and Find Full Text PDFThe Virtual Family computational whole-body anatomical human models were originally developed for electromagnetic (EM) exposure evaluations, in particular to study how absorption of radiofrequency radiation from external sources depends on anatomy. However, the models immediately garnered much broader interest and are now applied by over 300 research groups, many from medical applications research fields. In a first step, the Virtual Family was expanded to the Virtual Population to provide considerably broader population coverage with the inclusion of models of both sexes ranging in age from 5 to 84 years old.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2008
The biology of cancer is a complex interplay of many underlying processes, taking place at different scales both in space and time. A variety of theoretical models have been developed, which enable one to study certain components of the cancerous growth process. However, most previous approaches only focus on specific aspects of tumour development, largely ignoring the influence of the evolving tumour environment.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
January 2008
We present a model of solid tumor growth which can account for several stages of tumorigenesis, from the early avascular phase to the angiogenesis driven proliferation. The model combines several previously identified components in a consistent framework, including neoplastic tissue growth, blood and oxygen transport, and angiogenic sprouting. First experiments with the framework and comparisons with observations made on solid tumors in vivo illustrate the plausibility of the approach.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
September 2007
Mass spring models are frequently used to simulate deformable objects because of their conceptual simplicity and computational speed. Unfortunately, the model parameters are not related to elastic material constitutive laws in an obvious way. Several methods to set optimal parameters have been proposed, but so far only with limited success.
View Article and Find Full Text PDF