Publications by authors named "Bryn Funnekotter"

Myrtle rust is a plant disease caused through infection by the fungus and was first detected in Australia in 2010. The disease has spread through New South Wales, Victoria, Queensland, the Northern Territory, and Tasmania. In this short timeframe, myrtle rust has had a devastating impact on many native species in the family Myrtaceae, including several rainforest species that are now at risk of extinction.

View Article and Find Full Text PDF

The use of pH indicators provides a simple, semi-quantitative visual method for quickly assessing pH changes in tissue culture media; however, pH indicators are rarely used in routine plant tissue culture media. In this study, chlorophenol red, bromocresol purple, and bromocresol green were tested to assess their functionality in the growth medium for plant shoot cultures. In addition, a combination of bromocresol green and bromocresol purple was tested to determine if they would widen the observable colour change to better assess pH changes in the medium.

View Article and Find Full Text PDF

Cryopreservation allows the long-term storage of plant germplasm, but can cause damage to plant tissues, which must be repaired for survival to occur. This repair process is fuelled by the metabolic function of mitochondria; however, little is known about how metabolic function is affected by the cryopreservation process in plants. We compared metabolic rates of shoot tips of two Australian native species, Androcalva perlaria and Anigozanthos viridis.

View Article and Find Full Text PDF

The Myrtaceae is a very large and diverse family containing a number of economically and ecologically valuable species. In Australia, the family contains approximately 1700 species from 70 genera and is structurally and floristically dominant in many diverse ecosystems. In addition to threats from habitat fragmentation and increasing rates of natural disasters, infection by myrtle rust caused by is of significant concern to Australian Myrtaceae species.

View Article and Find Full Text PDF

Cryopreservation has several advantages over other ex situ conservation methods, and indeed is the only viable storage method for the long term conservation of most plant species. However, despite many advances in this field, it is increasingly clear that some species are ill-equipped to overcome the intense stress imposed by the cryopreservation process, making protocol development incredibly difficult using traditional trial and error methods. Cryobiotechnology approaches have been recently recognised as a strategic way forward, utilising intimate understanding of biological systems to inform development of more effective cryopreservation protocols.

View Article and Find Full Text PDF

Eighteen native species of (waterlilies) inhabit a range of freshwater wetlands in northern Australia, which are threatened by increased development and the potential impacts of climate change. To investigate conservation seed banking of these vulnerable species, we aimed to characterize their seed storage physiology by determining (i) seed desiccation tolerance and (ii) the effects of moisture content and storage temperature on seed germination and viability. Seeds of , , and (including multiple collections of three species) were placed in experimental storage at a range of temperatures (25°C, 5°C, -20°C and -190°C) following pre-equilibration at different RHs (15%, 30%, 50%, 70% or 95%).

View Article and Find Full Text PDF

Three wild species exhibited a significant reduction in antioxidants throughout the cryopreservation protocol, whilst the half-cell reduction potential became more oxidised. Antioxidant content recuperated in recovering shoot tips. Cryopreservation is the most efficient and cost-effective long-term storage solution for the conservation of a wide range of plant species and material.

View Article and Find Full Text PDF

Background: The application of a vacuum during the incubation in cryoprotective agents such as PVS2 allows for increased penetration, reducing total incubation times required before vitrification and post-cryopreservation regeneration is achieved.

Objective: This study compared a conventional droplet-vitrification protocol to the new vacuum infiltration vitrification protocol in four Australian plant species.

Materials And Methods: The new vacuum infiltration vitrification applied an 80 kPa vacuum during incubations in loading solution and PVS2.

View Article and Find Full Text PDF

We report the development of a cryopreservation protocol for the endemic Western Australian plant species Loxocarya cinerea (Restionaceae). Shoot tips from two genotypes, SXH404 and SXH804, were cryopreserved using the droplet-vitrification technique. Control explants, which were cryoprotected, but not cooled, showed regeneration for both genotypes (SXH404, 22.

View Article and Find Full Text PDF

A cryopreservation protocol was developed for Lomandra sonderi (Asparagaceae), an endemic plant of southwest Western Australia used for mine site restoration. Thermal analysis of L. sonderi shoot tips using differential scanning calorimetry was used to detect the formation of ice in shoot tips and consequently allowed optimisation of the time of incubation in plant vitrification solution 2 (PVS2), which attempted to minimise phytotoxicity of, and excessive dehydration by, its cryoprotective components.

View Article and Find Full Text PDF