Publications by authors named "Bryn A Bell"

Identifying the boundary beyond which quantum machines provide a computational advantage over their classical counterparts is a crucial step in charting their usefulness. Gaussian boson sampling (GBS), in which photons are measured from a highly entangled Gaussian state, is a leading approach in pursuing quantum advantage. State-of-the-art GBS experiments that run in minutes would require 600 million years to simulate using the best preexisting classical algorithms.

View Article and Find Full Text PDF

The development of new quantum light sources requires robust and convenient methods of characterizing their joint spectral properties. Measuring the joint spectral intensity between a photon pair ignores any correlations in spectral phase which may be responsible for degrading the quality of quantum interference. A fully phase-sensitive characterization tends to require significantly more experimental complexity.

View Article and Find Full Text PDF

Geometrical dimensionality plays a fundamentally important role in the topological effects arising in discrete lattices. Although direct experiments are limited by three spatial dimensions, the research topic of synthetic dimensions implemented by the frequency degree of freedom in photonics is rapidly advancing. The manipulation of light in these artificial lattices is typically realized through electro-optic modulation; yet, their operating bandwidth imposes practical constraints on the range of interactions between different frequency components.

View Article and Find Full Text PDF

Multi-photon interference in large multi-port interferometers is key to linear optical quantum computing and in particular to boson sampling. Silicon photonics enables complex interferometric circuits with many components in a small footprint and has the potential to extend these experiments to larger numbers of interfering modes. However, loss has generally limited the implementation of multi-photon experiments in this platform.

View Article and Find Full Text PDF

The development of large-scale optical quantum information processing circuits ground on the stability and reconfigurability enabled by integrated photonics. We demonstrate a reconfigurable 8×8 integrated linear optical network based on silicon nitride waveguides for quantum information processing. Our processor implements a novel optical architecture enabling any arbitrary linear transformation and constitutes the largest programmable circuit reported so far on this platform.

View Article and Find Full Text PDF

Multiphoton interference is central to photonic quantum information processing and quantum simulation, usually requiring multiple sources of nonclassical light followed by a unitary transformation on their modes. We observe interference in the four-photon events generated by a single silicon waveguide, where the different modes are six frequency channels. Rather than requiring a unitary transformation, the frequency correlations of the source are configured such that photons are generated in superposition states across multiple channels, and interference effects can be seen without further manipulation.

View Article and Find Full Text PDF

Time-bin entangled photons allow robust entanglement distribution over quantum networks. Integrated photonic circuits positioned at the nodes of a quantum network can perform the important functions of generating highly entangled photons and precisely manipulating their quantum state. In this Letter, we demonstrate time-bin entangled photon generation, noise suppression, wavelength division, and entanglement analysis on a single photonic chip utilizing low-loss double-stripe silicon nitride waveguide structures.

View Article and Find Full Text PDF

We demonstrate optical frequency conversion between telecom wavelengths using four-wave mixing Bragg scattering powered by two pump pulses polarized on orthogonal axes of a silicon waveguide. This allows conversion in a single frequency direction while, with co-polarized pumps, the signal is redshifted or blueshifted with similar efficiency. Our approach exploits the birefringence of the waveguide and its effect on the phase matching of the four-wave mixing process.

View Article and Find Full Text PDF

Quantum communication networks require single photon frequency converters, whether to shift photons between wavelength channels, to shift photons to the operating wavelength of a quantum memory, or to shift photons of different wavelengths to be of the same wavelength, to enable a quantum interference. Here, we demonstrate frequency conversion of laser pulses attenuated to the single photon regime in an integrated silicon-on-insulator device using four-wave mixing Bragg scattering, with conversion efficiencies of up to 12%, or 32% after correcting for nonlinear loss created by the pump lasers. The frequency shift can be conveniently chosen by tuning of the pump frequencies.

View Article and Find Full Text PDF