Transverse collective excitations in 50-50 and 80-20 Lennard-Jones binary liquid mixtures are studied for different mass ratio of components R at fixed numerical densities. Increasing the mass ratio results in a growing difference between frequencies of shear waves and transverse optic modes. We report an increase in the propagation gap width for shear waves with mass ratio of components and compare it to the gap width expression, known from the transverse dynamics of simple liquids.
View Article and Find Full Text PDFSince decades, the concept of vibrational density of states in glasses has been mirrored in liquids by the instantaneous-normal-mode spectrum. In glasses instantaneous configurations are believed to be situated close to minima of the potential-energy hypersurface and all eigenvalues of the associated Hessian matrix are positive. In liquids this is no longer true, and modes corresponding to both positive and negative eigenvalues exist.
View Article and Find Full Text PDFOne of the fundamental quantities in dynamics of the liquid state, the adiabatic speed of sound [Formula: see text], is extremely difficult to predict from computer simulations, especially in ab initio simulations. Here we derive an expression for the instantaneous correlator of fluctuations of longitudinal component of stress tensor, which contains [Formula: see text] along with others quantities easy accessible via classical and ab initio computer simulations. We show that the proposed methodology works well in the case of Lennard-Jones and soft-sphere simple fluids, Kr-Ar liquid mixture in connection with simulations with effective pair interactions as well as for liquid Sb, fluid Hg and molten NaCl from ab initio simulations.
View Article and Find Full Text PDFWe report ansimulation and theoretical study of collective dynamics in liquid Sb at 973 K. An application of the GCM (generalized collective modes) theoretical approach to analysis of simulation-derived time correlation functions resulted in two types of propagating eigenmodes. We found that the almost flat dispersion of the high-frequency branch of propagating modes can be explained by out-of-phase oscillations of nearest neighbors which form quasi-bound atomic pairs for at least 30 ps.
View Article and Find Full Text PDFWe discuss a field-theoretical approach to liquids, solids, and glasses, published recently [Phys. Rev. E 105, 034108 (2022)10.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2022
We study the instantaneous normal mode (INM) spectrum of a simulated soft-sphere liquid at different equilibrium temperatures We find that the spectrum of eigenvalues [Formula: see text] has a sharp maximum near (but not at) [Formula: see text] and decreases monotonically with [Formula: see text] on both the stable and unstable sides of the spectrum. The spectral shape strongly depends on temperature. It is rather asymmetric at low temperatures (close to the dynamical critical temperature) and becomes symmetric at high temperatures.
View Article and Find Full Text PDFCollective dynamics of metallic melts at high pressures is one of the open issues of condensed matter physics. By means of ab initio molecular dynamics simulations, we examine features of dispersions of collective excitations through transverse current spectral functions, as a function of pressure. Typical metallic melts, such as Li and Na monovalent metals as well as Al, Pb and In polyvalent metals are considered.
View Article and Find Full Text PDFEvolution of structure and dynamics of liquid Al with pressure along the melting line up to 300 GPa has been studied by means of ab initio molecular dynamics simulations. An analysis of structural properties shows that liquid Al undergoes uniform compression with pressure associated with a competition of the existing icosahedral local order with bcc ordering above 200 GPa. Dispersion of collective excitations indicates the presence of two branches of transverse nonpropagative modes in the second pseudo-Brillouin zone.
View Article and Find Full Text PDFThe Earth's solid inner core is a highly attenuating medium. It consists mainly of iron. The high attenuation of sound wave propagation in the inner core is at odds with the widely accepted paradigm of hexagonal close-packed phase stability under inner core conditions, because sound waves propagate through the hexagonal iron without energy dissipation.
View Article and Find Full Text PDFTrachenko [Trachenko, Phys. Rev. E 96, 062134 (2017)2470-004510.
View Article and Find Full Text PDFVelocity autocorrelation functions (VAFs) of the fluids are studied on short- and long-time scales within a unified approach. This approach is based on an effective summation of the infinite continued fraction at a reasonable assumption about convergence of relaxation times of the high order memory functions, which have a purely kinetic origin. The VAFs obtained within our method are compared with computer simulation data for the liquid Ne at different densities and the results, which follow from the Markovian approximation for the highest order kinetic kernels.
View Article and Find Full Text PDFWe investigated the atomic structure of liquid Rb along an isothermal path at 573 K, up to 23 GPa, by X-ray diffraction measurements. By raising the pressure, we observed a liquid-liquid transformation from a simple metallic liquid to a complex one. The transition occurs at 7.
View Article and Find Full Text PDFIntroduction: The extent of peripheral artery disease (PAD) measured by the ankle-brachial index (ABI) and intima-media thickness (IMT) is correlated with the complexity of coronary artery disease (CAD) in stable angina patients. However, data regarding patients with acute coronary syndromes are still lacking.
Aim: To compare coronary complexity measured by the SYNTAX score in patients with and without PAD presenting with myocardial infarction (MI).
The "Frenkel line" (FL), the thermodynamic locus where the time for a particle to move by its size equals the shortest transverse oscillation period, has been proposed as a boundary between recently discovered liquid-like and gas-like regions in supercritical fluids. We report a simulation study of isothermal supercritical neon in a range of densities intersecting the FL. Specifically, structural properties and single-particle and collective dynamics are scrutinized to unveil the onset of any anomalous behavior at the FL.
View Article and Find Full Text PDFCollective excitations in hard-sphere fluids were studied in a wide range of wave numbers and packing fractions η by means of molecular dynamics simulations. We report the observation of non-hydrodynamic transverse excitations for packing fractions η≥0.395 in the shape of transverse current spectral functions.
View Article and Find Full Text PDFUsing a combination of ab initio molecular dynamics and several fit models for dynamic structure of liquid metals, we explore an issue of possible manifestation of non-acoustic collective excitations in longitudinal dynamics having liquid Na as a case study. A model with two damped harmonic oscillators (DHOs) in time domain is used for analysis of the density-density time correlation functions. Another similar model with two propagating contributions and three lowest exact sum rules is considered, as well as an extended hydrodynamic model known as thermo-viscoelastic one which permits two types of propagating modes outside the hydrodynamic region to be used for comparison with ab initio obtained time correlation functions and calculations of dispersions of collective excitations.
View Article and Find Full Text PDFA fitting scheme for analysis of collective dynamics in liquid binary alloys is proposed. It is based on explicit treatment of contributions from three relaxing modes and two types of propagating modes to the partial density-density time correlation functions and corresponding partial dynamic structure factors. Exact sum rules for each partial dynamic structure factor were taken into account.
View Article and Find Full Text PDF