Resonant intermediate states have been proposed to increase the efficiency of entangled two-photon absorption (ETPA). Although resonance-enhanced ETPA (r-ETPA) has been demonstrated in atomic systems using bright squeezed vacuum, it has not been studied in organic molecules. We investigate for the first time r-ETPA in an organic molecular dye, indocyanine green (ICG), when excited by broadband entangled photons in near-IR.
View Article and Find Full Text PDFFluorescence lifetime experiments are a standard approach for measuring excited-state dynamics and local environmental effects. Here, we show that entangled photon pairs produced from a continuous-wave (CW) laser diode can replicate pulsed laser experiments without phase modulation. As a proof of principle, picosecond fluorescence lifetimes of indocyanine green are measured in multiple environments.
View Article and Find Full Text PDFEntangled photon pairs are predicted to linearize and increase the efficiency of two-photon absorption, allowing continuous wave laser diodes to drive ultrafast time-resolved spectroscopy and nonlinear processes. Despite a range of theoretical studies and experimental measurements, inconsistencies in the value of the entanglement-enhanced interaction cross section persist. A spectrometer that can temporally and spectrally characterize the entangled photon state before, during, and after any potential two-photon excitation event is constructed.
View Article and Find Full Text PDF