Fungal infections cause a large health burden but are treated by only a handful of antifungal drug classes. Chromatin factors have emerged as possible targets for new antifungals. These targets include the reader proteins, which interact with posttranslationally modified histones to influence DNA transcription and repair.
View Article and Find Full Text PDFBackground: DNA methylation is a complex epigenetic marker that can be analyzed using a wide variety of methods. Interpretation and visualization of DNA methylation data can mask complexity in terms of methylation status at each CpG site, cellular heterogeneity of samples and allelic DNA methylation patterns within a given DNA strand. Bisulfite sequencing is considered the gold standard, but visualization of massively parallel sequencing results remains a significant challenge.
View Article and Find Full Text PDFIntroduction: Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2013
Salt reabsorption is the major energy-requiring process in the kidney, and AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism. Mice with targeted deletion of the β1-subunit of AMPK (AMPK-β1(-/-) mice) had significantly increased urinary Na(+) excretion on a normal salt diet. This was associated with reduced expression of the β-subunit of the epithelial Na(+) channel (ENaC) and increased subapical tubular expression of kidney-specific Na(+)-K(+)-2Cl(-) cotransporter 2 (NKCC2) in the medullary thick ascending limb of Henle.
View Article and Find Full Text PDFBackground: The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) β subunits (β1 and β2) provide scaffolds for binding α and γ subunits and contain a carbohydrate-binding module important for regulating enzyme activity. We generated C57Bl/6 mice with germline deletion of AMPK β2 (β2 KO) and examined AMPK expression and activity, exercise capacity, metabolic control during muscle contractions, aminoimidazole carboxamide ribonucleotide (AICAR) sensitivity, and susceptibility to obesity-induced insulin resistance. We find that β2 KO mice are viable and breed normally.
View Article and Find Full Text PDFThe AMP-activated protein kinase (AMPK) is an alphabetagamma heterotrimer that regulates appetite and fuel metabolism. We have generated AMPK beta1(-/-) mice on a C57Bl/6 background that are viable, fertile, survived greater than 2 years, and display no visible brain developmental defects. These mice have a 90% reduction in hepatic AMPK activity due to loss of the catalytic alpha subunits, with modest reductions of activity detected in the hypothalamus and white adipose tissue and no change in skeletal muscle or heart.
View Article and Find Full Text PDFThe AMP-activated protein kinase (AMPK) is the critical component of a highly conserved signalling pathway found in all eukaryotes that plays a key role in regulating metabolic processes in response to variations in energy supply and demand. AMPK protects cells from stresses that decrease cellular energy charge (i.e increase the AMP:ATP ratio) by initiating a shift in metabolism towards the generation of ATP while simultaneously down regulating pathways that consume ATP.
View Article and Find Full Text PDFThe AMP-activated protein kinase (AMPK) is an alphabetagamma heterotrimer that plays a pivotal role in regulating cellular and whole-body metabolism. Activation of AMPK reverses many of the metabolic defects associated with obesity and type 2 diabetes, and therefore AMPK is considered a promising target for drugs to treat these diseases. Recently, the thienopyridone A769662 has been reported to directly activate AMPK by an unexpected mechanism.
View Article and Find Full Text PDFAdipose triglyceride lipase (ATGL) is important for triglyceride (TG) metabolism in adipose tissue, and ATGL-null mice show increased adiposity. Given the apparent importance of ATGL in TG metabolism and the association of lipid deposition with insulin resistance, we examined the role of ATGL in regulating skeletal muscle lipid metabolism and insulin-stimulated glucose disposal. ATGL expression in myotubes was reduced by small interfering RNA and increased with a retrovirus encoding GFP-HA-ATGL.
View Article and Find Full Text PDFObjective: Insulin resistance associated with obesity and diabetes is ameliorated by specific overexpression of GLUT4 in skeletal muscle. The molecular mechanisms regulating skeletal muscle GLUT4 expression remain to be elucidated. The purpose of this study was to examine these mechanisms.
View Article and Find Full Text PDFElevated levels of tumor necrosis factor (TNFalpha) are implicated in the development of insulin resistance, but the mechanisms mediating these chronic effects are not completely understood. We demonstrate that TNFalpha signaling through TNF receptor (TNFR) 1 suppresses AMPK activity via transcriptional upregulation of protein phosphatase 2C (PP2C). This in turn reduces ACC phosphorylation, suppressing fatty-acid oxidation, increasing intramuscular diacylglycerol accumulation, and causing insulin resistance in skeletal muscle, effects observed both in vitro and in vivo.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) coordinates cellular metabolism in response to energy demand as well as to a variety of stimuli. The AMPK beta subunit acts as a scaffold for the alpha catalytic and gamma regulatory subunits and targets the AMPK heterotrimer to glycogen. We have determined the structure of the AMPK beta glycogen binding domain in complex with beta-cyclodextrin.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) is an important metabolic stress-sensing protein kinase responsible for regulating metabolism in response to changing energy demand and nutrient supply. Mammalian AMPK is a stable alphabetagamma heterotrimer comprising a catalytic alpha and two non-catalytic subunits, beta and gamma. The beta subunit targets AMPK to membranes via an N-terminal myristoyl group and to glycogen via a mid-molecule glycogen-binding domain.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
September 2004
Obesity in humans is associated with lipid accumulation in skeletal muscle, insulin and leptin resistance, and type 2 diabetes. AMP-activated protein kinase (AMPK) is an important regulator of fatty acid (FA) metabolism in skeletal muscle. To address the hypothesis that lipid accumulation in skeletal muscle of obese subjects may be due to down-regulation of AMPK, we measured mRNA and protein levels of AMPK isoforms, AMPKalpha1 and -alpha2 activity, AMPK kinase activity, acetyl-coenzyme A carboxylase (ACCbeta) expression and phosphorylation, and FA metabolism in biopsies of rectus abdominus muscle from lean and obese women.
View Article and Find Full Text PDFAMP-activated protein kinase (AMPK) is a alphabetagamma heterotrimer that is activated in response to both hormones and intracellular metabolic stress signals. AMPK is regulated by phosphorylation on the alpha subunit and by AMP allosteric control previously thought to be mediated by both alpha and gamma subunits. Here we present evidence that adjacent gamma subunit pairs of CBS repeat sequences (after Cystathionine Beta Synthase) form an AMP binding site related to, but distinct from the classical AMP binding site in phosphorylase, that can also bind ATP.
View Article and Find Full Text PDFThe yeast Snf1 kinase and its mammalian ortholog, AMP-activated protein kinase (AMPK), regulate responses to metabolic stress. Previous studies identified a glycogen-binding domain in the AMPK beta1 subunit, and the sequence is conserved in the Snf1 kinase beta subunits Gal83 and Sip2. Here we use genetic analysis to assess the role of this domain in vivo.
View Article and Find Full Text PDF