Quantitative and mechanistically detailed kinetics of the reaction of hydroxyl radical (OH) with carbon monoxide (CO) have been a longstanding goal of contemporary chemical kinetics. This fundamental prototype reaction plays an important role in atmospheric and combustion chemistry, motivating studies for accurate determination of the reaction rate coefficient and its pressure and temperature dependence at thermal reaction conditions. This intricate dependence can be traced directly to details of the underlying dynamics (formation, isomerization, and dissociation) involving the reactive intermediates - and -HOCO, which can only be observed transiently.
View Article and Find Full Text PDFLong-wavelength mid-infrared (MIR) frequency combs with high power and flexible tunability are highly desired for molecular spectroscopy, including investigation of large molecules such as C. We present a high power, phase-stabilized frequency comb near 10 μm, generated by a synchronously pumped, singly resonant optical parametric oscillator (OPO) based on AgGaSe. The OPO can be continuously tuned from 8.
View Article and Find Full Text PDFWe report on, to the best of our knowledge, the first singly resonant (SR), synchronously pumped optical parametric oscillator (OPO) based on orientation-patterned gallium arsenide (OP-GaAs). Together with a doubly resonant (DR) degenerate OPO based on the same OP-GaAs material, the output spectra cover 3 to 6 μm within ∼3 dB of relative power. The DR-OPO has the highest output power reported to date from a femtosecond, synchronously pumped OPO based on OP-GaAs.
View Article and Find Full Text PDFFor more than half a century, high-resolution infrared spectroscopy has played a crucial role in probing molecular structure and dynamics. Such studies have so far been largely restricted to relatively small and simple systems, because at room temperature even molecules of modest size already occupy many millions of rotational/vibrational states, yielding highly congested spectra that are difficult to assign. Targeting more complex molecules requires methods that can record broadband infrared spectra (that is, spanning multiple vibrational bands) with both high resolution and high sensitivity.
View Article and Find Full Text PDFWe demonstrate time-resolved frequency comb spectroscopy (TRFCS), a new broadband absorption spectroscopy technique for the study of trace free radicals on the microsecond timescale. We apply TRFCS to study the time-resolved, mid-infrared absorption of the deuterated hydroxyformyl radical trans-DOCO, an important short-lived intermediate along the OD + CO reaction path. Directly after photolysis of the chemical precursor acrylic acid-d1, we measure absolute trans-DOCO product concentrations with a sensitivity of 5 × 10(10) cm(-3) and observe its subsequent loss with a time resolution of 25 μs.
View Article and Find Full Text PDF