Publications by authors named "Bryce E Johnson"

Effective collection of trace-level lanthanides and actinides is advantageous for recovery and recycling of valuable resources, environmental remediation, chemical separations, and in situ monitoring. Using isotopic tracers, we have evaluated a number of conventional and nanoporous sorbent materials for their ability to capture and remove selected lanthanides (Ce and Eu) and actinides (Th, Pa, U, and Np) from fresh and salt water systems. In general, the nanostructured materials demonstrated a higher level of performance and consistency.

View Article and Find Full Text PDF

Chemically selective chemisorbents are needed to monitor natural and engineered waters for anthropogenic releases of stable and radioactive contaminants. Here, a number of individual and mixtures of chemisorbents were investigated for their ability to extract select fission and activation product elements from marine and coastal waters, including Co, Zr, Ru, Ag, Te, Sb, Ba, Cs, Ce, Eu, Pa, Np, and Th. Conventional manganese oxide and cyanoferrate sorbents, including commercially available Anfezh and potassium hexacyanocobalt(II) ferrate(II) (KCFC), were tested along with novel nano-structured surfaces (known as Self Assembled Monolayers on Mesoporous Supports or SAMMS) functionalized with a variety of moieties including thiol, diphosphonic acid (DiPhos-), methyl-3,4 hydroxypyridinone (HOPO-), and cyanoferrate.

View Article and Find Full Text PDF

Monitoring natural waters for the inadvertent release of radioactive fission products produced as a result of nuclear power generation downstream from these facilities is essential for maintaining water quality. To this end, we evaluated sorbents for simultaneous in-situ large volume extraction of radionuclides with both soft (e.g.

View Article and Find Full Text PDF

The Walker Creek intertidal delta of Tomales Bay, California is impacted by a former mercury mine within the watershed. Eleven short sediment cores (10 cm length) collected from the delta found monomethylmercury (MMHg) concentrations ranging from 0.3 to 11.

View Article and Find Full Text PDF