Fluorescent micellar carriers with controlled release of a novel anticancer drug were developed to enable intracellular imaging and cancer treatment simultaneously. The nanosized fluorescent micellar systems were embedded with a novel anticancer drug via the self-assembling behavior of well-defined block copolymers based on amphiphilic poly(acrylic acid)-block-poly(n-butyl acrylate) (PAA-b-PnBA) copolymer obtained by Atom Transfer Radical Polymerization (ATRP) and hydrophobic anticancer benzimidazole-hydrazone drug (BzH). Through this method, well-defined nanosized fluorescent micelles were obtained consisting of a hydrophilic PAA shell and a hydrophobic PnBA core embedded with the BzH drug due to the hydrophobic interactions, thus reaching very high encapsulation efficiency.
View Article and Find Full Text PDFThe aim of this research is to determine the effect of the hybrid material based on polyvinyl alcohol and silver nanoparticles (PVA/AgNps) in the treatment of the otitis externa as an additional component in the commercial product "Betazon Trio". It was established that the experimental creamy formula with silver concentration 600 mg/L is suitable for recovery of the microbial homeostasis when it is administrated once daily in dose 1 ml over a period of 14 days.
View Article and Find Full Text PDFNovel biocompatible water-soluble fluorescent micelles with embedded perylene diimides (PDI) for intracellular applications have been prepared by self assembling of amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) (PVA-b-PAN) copolymers in the presence of synthesized fluorophores. Amphiphilic PVA-b-PAN copolymers were obtained by selective hydrolysis of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) (PVAc-b-PAN) copolymer. The preparation of the novel fluorescence micelles consisting of PVA hydrophilic shell and PAN hydrophobic core with incorporated PDI fluorophores has been confirmed by DLS and TEM analysis.
View Article and Find Full Text PDFHerein we report on the synthesis and sensor activity of a novel pH sensitive probe designed as highly water-soluble fluorescent micelles by grafting of 1,8-naphthalimide-rhodamine bichromophoric FRET system (RNI) to the PMMA block of a well-defined amphiphilic diblock copolymer-poly(methyl methacrylate)-b-poly(methacrylic acid) (PMMA48-b-PMAA27). The RNI-PMMA48-b-PMAA27 adduct is capable of self-assembling into micelles with a hydrophobic PMMA core, containing the anchored fluorescent probe, and a hydrophilic shell composed of PMAA block. Novel fluorescent micelles are able to serve as a highly sensitive pH probe in water and to internalize successfully HeLa and HEK cells.
View Article and Find Full Text PDFAn amperometric glucose enzyme electrode was developed by the immobilization of glucose oxidase (GOD) in a composite material based on polyvinyl alcohol (PVA) and partially prehydrolyzed tetraethyl orthosilicate (pphTEOS) on the surface of "in-house" fabricated graphite electrodes. For comparison, silver and gold nanoparticles (Ag/AuNPs) embedded in the PVA-pphTEOS matrix was prepared through a novel method via sol-gel process based on the in situ chemical reduction of Ag or Au ions using PVA as a reducing agent and stabilizer. The successful incorporation of Ag and AuNPs ranging from 5 to 7.
View Article and Find Full Text PDFComparing the influence of two different stabilizers as polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP), as well as organosilanes as tetraethoxysilane (TEOS), allows determining the main role of the silver nanoparticles included in hybrid materials for the realization of their antimicrobial activity. The proposed two-step testing scheme first onto control strains and then onto clinical bacterial and fungal strains resistant to antibiotics allows full investigation of these properties.
View Article and Find Full Text PDFHybrid materials based on polyvinylpyrrolidone (PVP) with silver nanoparticles (AgNps) were synthesized applying two different strategies based on thermal or chemical reduction of silver ions to silver nanoparticles using PVP as a stabilizer. The formation of spherical silver nanoparticles with diameter ranging from 9 to 16 nm was confirmed by TEM analysis. UV-vis and FTIR spectroscopy were also applied to confirm the successful formation of AgNps.
View Article and Find Full Text PDFThe sporocidic activity of hybrid materials based on PVA/AgNps/TEOS thin films has been investigated. Deep Agar Method has been applied to study the sporocidic properties of these hybrid materials with different silver concentrations. This method has been used because of the lack of standard methods for testing the sporocidic activity in such materials and due to the specific characteristics of bacterial spore.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2010
Novel hybrid material thin films based on polyvinyl alcohol (PVA)/tetraethyl orthosilicate (TEOS) with embedded silver nanoparticles (AgNps) were synthesized using sol-gel method. Two different strategies for the synthesis of silver nanoparticles in PVA/TEOS matrix were applied based on reduction of the silver ions by thermal annealing of the films or by preliminary preparation of silver nanoparticles using PVA as a reducing agent. The successful incorporation of silver nanoparticles ranging from 5 to 7nm in PVA/TEOS matrix was confirmed by TEM and EDX analysis, UV-Vis spectroscopy and XRD analysis.
View Article and Find Full Text PDFA new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) (PVOH-b-PAN) copolymer obtained by selective hydrolysis of well-defined poly(vinyl acetate)-b-poly(acrylonitrile) copolymer synthesized by cobalt mediated radical polymerization was used for the preparation of PVOH-b-PAN based micelles with embedded silver nanoparticles. The successful formation of silver loaded micelles has been confirmed by UV-vis, DLS and TEM analysis and their antibacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S.
View Article and Find Full Text PDFHerein we show that a new amphiphilic poly(vinyl alcohol)-b-poly(acrylonitrile) block copolymer dispersed in water can be easily loaded with gold nanoparticles by addition of chlorauric acid followed by reduction by sodium borohydride. After deposition of the so-loaded micelles onto a silicon wafer, followed by an appropriate thermal treatment, the poly(acrylonitrile) core of the micelles is carbonized, while the poly(vinyl alcohol) shell is completely decomposed and volatilized, leading to gold encapsulated in carbon nanoparticles. The morphology of the micelles is maintained during thermal treatment without requiring shell-cross-linking of the micelles prior to pyrolysis.
View Article and Find Full Text PDF